Hydrogen-enhanced cracking of 2205 duplex stainless steel

ABSTRACT Tensile and fatigue crack growth tests of 2205 duplex stainless steel (DSS) were performed in laboratory air, gaseous hydrogen at 0.2 MPa and saturated H2S solution. The longitudinal specimen showed a lesser degradation of tensile properties than the transverse ones in saturated H2S solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2007-12, Vol.30 (12), p.1228-1236
Hauptverfasser: TSAY, L. W., YOUNG, M. C., SHIN, C.-S., CHAN, S. L. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Tensile and fatigue crack growth tests of 2205 duplex stainless steel (DSS) were performed in laboratory air, gaseous hydrogen at 0.2 MPa and saturated H2S solution. The longitudinal specimen showed a lesser degradation of tensile properties than the transverse ones in saturated H2S solution. The orientation of specimens with respect to rolling direction had little influence on the fatigue crack growth rate (FCGR) of the alloy in air. Furthermore, 2205 duplex stainless steel was susceptible to hydrogen‐enhanced fatigue crack growth. Transmission electron micrographs, in addition to X‐ray diffraction, revealed that the strain‐induced austenite to martensite transformation occurred near the crack surface within a rather narrow depth. Fatigue fractography of the specimens tested in air showed mainly transgranular fatigue fracture with a small amount of flat facet fracture. Furthermore, extensive quasi‐cleavage fracture of 2205 duplex stainless steel was associated with the hydrogen‐enhanced crack growth.
ISSN:8756-758X
1460-2695
DOI:10.1111/j.1460-2695.2007.01191.x