Fundamental limits on the digital phase measurement method based on cross-correlation analysis

Ultra-precision phase measurement is a key technology for state-of-the-art laser interferometry. In this paper we present a fully digital phase measurement method based on cross-correlation analysis, and analyze the measurement errors caused by sampling quantization, intrinsic white noise and non-in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2012-09, Vol.83 (9), p.095110-095110
Hauptverfasser: Liang, Yu-Rong, Duan, Hui-Zong, Yeh, Hsien-Chi, Luo, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultra-precision phase measurement is a key technology for state-of-the-art laser interferometry. In this paper we present a fully digital phase measurement method based on cross-correlation analysis, and analyze the measurement errors caused by sampling quantization, intrinsic white noise and non-integral-cycle sampling. The last error source results in a cyclic error that has not been reported ever. We used a high-performance data acquisition system to carry out the cross-correlation-based phase measurement, and obtained a noise level of 1.2 × 10−6 rad/Hz1/2@1 Hz. Moreover, the cyclic phase error of about 10−2 rad/Hz1/2, caused by non-integral-cycle sampling, had been observed. In order to demonstrate the application of this precision phase measurement method, an ultra-precision heterodyne laser interferometer, consisting of digital phase measurement system and ultra-stable optical bench, was constructed for displacement measurement. The experimental results showed that a measurement resolution of 63 pm had been achieved.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4751867