Static and dynamic nanomechanical properties of human skin tissue using atomic force microscopy: Effect of scarring in the upper dermis

Following traumatic injury, skin has the capacity to repair itself through a complex cascade of biochemical change. The dermis, which contains a load-bearing collagenous network structure, is remodelled over a long period of time, affecting its mechanical behaviour. This study examines the nanomecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2012-11, Vol.8 (11), p.4123-4129
Hauptverfasser: Grant, C.A., Twigg, P.C., Tobin, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following traumatic injury, skin has the capacity to repair itself through a complex cascade of biochemical change. The dermis, which contains a load-bearing collagenous network structure, is remodelled over a long period of time, affecting its mechanical behaviour. This study examines the nanomechanical and viscoelastic properties of the upper dermis from human skin that includes both healthy intact and scarred tissue. Extensive nanoindentation analysis shows that the dermal scar tissue exhibits stiffer behaviour than the healthy intact skin. The scar skin also shows weaker viscoelastic creep and capability to dissipate energy at physiologically relevant frequencies than the adjacent intact skin. These results are discussed in conjunction with a visual change in the orientation of collagenous fibrils in the scarred dermis compared with normal dermis, as shown by atomic force microscopy imaging.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2012.06.042