Transduction of various mammalian bone marrow-derived mesenchymal stem cells by baculovirus
The use of stem cells will lead to novel treatments for a wide range of diseases due to their properties of self-renewing, pluripotent, and undifferentiated state, and the stem cells are usually genetically modified for cell and gene therapy. If the baculovirus, as a new gene vector, can be effectiv...
Gespeichert in:
Veröffentlicht in: | Sheng li hsüeh pao 2008-06, Vol.60 (3), p.431-436 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of stem cells will lead to novel treatments for a wide range of diseases due to their properties of self-renewing, pluripotent, and undifferentiated state, and the stem cells are usually genetically modified for cell and gene therapy. If the baculovirus, as a new gene vector, can be effectively transduced into various mammalian bone marrow-derived mesenchymal stem cells (BMSCs) in vitro, it will be a better gene vector to genetically modify the stem cells. The aim of the present study is to investigate the transduction efficiency of recombinant baculovirus (BacV-CMV-EGFP), which expressed a reporter gene encoding enhanced green fluorescent protein (EGFP) under a cytomegalovirus immediate early (CMV-IE) promoter, into various mammalian BMSCs. The BMSCs of mouse, rat, porcine, rhesus, and human were cultured primarily in vitro. After more than three passages, the mammalian BMSCs were seeded into dishes and cultured in a humidified incubator at 37 °C with 5% CO(2). When the cells reached about 80% conflu |
---|---|
ISSN: | 0371-0874 |