Medium-mass nuclei with normal-ordered chiral NN+3N interactions
We study the use of truncated normal-ordered three-nucleon interactions in nuclear structure calculations starting from chiral two- plus three-nucleon Hamiltonians evolved consistently with the similarity renormalization group. We present three key developments: (i) a rigorous benchmark of the norma...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-08, Vol.109 (5), p.052501-052501 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the use of truncated normal-ordered three-nucleon interactions in nuclear structure calculations starting from chiral two- plus three-nucleon Hamiltonians evolved consistently with the similarity renormalization group. We present three key developments: (i) a rigorous benchmark of the normal-ordering approximation in the importance-truncated no-core shell model for (4)He, (16)O, and (40)Ca; (ii) a direct comparison of the importance-truncated no-core shell model results with coupled-cluster calculations at the singles and doubles level for (16)O; and (iii) first applications of similarity renormalization group-evolved chiral NN+3N Hamiltonians in coupled-cluster calculations for medium-mass nuclei (16,24)O and (40,48)Ca. We show that the normal-ordered two-body approximation works very well beyond the lightest isotopes and opens a path for studies of medium-mass and heavy nuclei with chiral two- plus three-nucleon interactions. At the same time we highlight the predictive power of chiral Hamiltonians. |
---|---|
ISSN: | 1079-7114 |
DOI: | 10.1103/PhysRevLett.109.052501 |