Smart random walkers: the cost of knowing the path

In this work we study the problem of targeting signals in networks using entropy information measurements to quantify the cost of targeting. We introduce a penalization rule that imposes a restriction on the long paths and therefore focuses the signal to the target. By this scheme we go continuously...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-07, Vol.86 (1 Pt 1), p.011120-011120, Article 011120
Hauptverfasser: Perotti, Juan I, Billoni, Orlando V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we study the problem of targeting signals in networks using entropy information measurements to quantify the cost of targeting. We introduce a penalization rule that imposes a restriction on the long paths and therefore focuses the signal to the target. By this scheme we go continuously from fully random walkers to walkers biased to the target. We found that the optimal degree of penalization is mainly determined by the topology of the network. By analyzing several examples, we have found that a small amount of penalization reduces considerably the typical walk length, and from this we conclude that a network can be efficiently navigated with restricted information.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.86.011120