Space dependent Fermi velocity in strained graphene
We investigate some apparent discrepancies between two different models for curved graphene: the one based on tight-binding and elasticity theory, and the covariant approach based on quantum field theory in curved space. We demonstrate that strained or corrugated samples will have a space-dependent...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-06, Vol.108 (22), p.227205-227205, Article 227205 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate some apparent discrepancies between two different models for curved graphene: the one based on tight-binding and elasticity theory, and the covariant approach based on quantum field theory in curved space. We demonstrate that strained or corrugated samples will have a space-dependent Fermi velocity in either approach that can affect the interpretation of local probe experiments in graphene. We also generalize the tight-binding approach to general inhomogeneous strain and find a gauge field proportional to the derivative of the strain tensor that has the same form as the one obtained in the covariant approach. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.108.227205 |