Unifying microscopic mechanism for pressure and cold denaturations of proteins
We study the stability of globular proteins as a function of temperature and pressure through NPT simulations of a coarse-grained model. We reproduce the elliptical stability of proteins and highlight a unifying microscopic mechanism for pressure and cold denaturations. The mechanism involves the so...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-07, Vol.109 (4), p.048104-048104, Article 048104 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the stability of globular proteins as a function of temperature and pressure through NPT simulations of a coarse-grained model. We reproduce the elliptical stability of proteins and highlight a unifying microscopic mechanism for pressure and cold denaturations. The mechanism involves the solvation of nonpolar residues with a thin layer of water. These solvated states have lower volume and lower hydrogen-bond energy compared to other conformations of nonpolar solutes. Hence, these solvated states are favorable at high pressure and low temperature, and they facilitate protein unfolding under these thermodynamical conditions. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.109.048104 |