Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter

Particulate matter (PM) is a complex, heterogeneous mixture that changes in time and space. It encompasses many different chemical components and physical characteristics, many of which have been cited as potential contributors to toxicity. Each component has multiple sources, and each source genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2012-12, Vol.60, p.504-526
Hauptverfasser: Kelly, Frank J., Fussell, Julia C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Particulate matter (PM) is a complex, heterogeneous mixture that changes in time and space. It encompasses many different chemical components and physical characteristics, many of which have been cited as potential contributors to toxicity. Each component has multiple sources, and each source generates multiple components. Identifying and quantifying the influences of specific components or source-related mixtures on measures of health-related impacts, especially when particles interact with other co-pollutants, therefore represents one of the most challenging areas of environmental health research. Current knowledge does not allow precise quantification or definitive ranking of the health effects of PM emissions from different sources or of individual PM components and indeed, associations may be the result of multiple components acting on different physiological mechanisms. Some results do suggest a degree of differential toxicity, namely more consistent associations with traffic-related PM emissions, fine and ultrafine particles, specific metals and elemental carbon and a range of serious health effects, including increased morbidity and mortality from cardiovascular and respiratory conditions. A carefully targeted programme of contemporary toxicological and epidemiological research, incorporating more refined approaches (e.g. greater speciation data, more refined modelling techniques, accurate exposure assessment and better definition of individual susceptibility) and optimal collaboration amongst multidisciplinary teams, is now needed to advance our understanding of the relative toxicity of particles from various sources, especially the components and reactions products of traffic. This will facilitate targeted abatement policies, more effective pollution control measures and ultimately, a reduction in the burden of disease attributable to ambient PM pollution. ► Identifying toxic component(s) of particulate matter is a major challenge. ► Evidence suggesting differential toxicity of components and sources are discussed. ► Targeted and contemporary studies are needed to further understand relative toxicity of particles. ► Goals of refined research are abatement policies, pollution control measures and improved health.
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2012.06.039