Investigation on performance of variable geometry ejectors for CO₂ refrigeration cycles

This paper presents a comprehensive study on a controllable two-phase flow ejector component efficiencies and ejector performances in transcritical CO₂ refrigeration cycles. A two-phase flow ejector expansion model was developed and experimentally validated. A method of determining the efficiencies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2012-09, Vol.45 (1), p.829-839
Hauptverfasser: Liu, Fang, Groll, Eckhard A, Li, Daqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a comprehensive study on a controllable two-phase flow ejector component efficiencies and ejector performances in transcritical CO₂ refrigeration cycles. A two-phase flow ejector expansion model was developed and experimentally validated. A method of determining the efficiencies of ejector motive nozzle, suction nozzle, and mixing section based on the measured performance data external to the ejector was developed. It was found that motive nozzle efficiency decreases as ejector throat area decreases, and that suction nozzle efficiency is affected by outdoor air temperature. Empirical correlations of ejector component efficiencies were reduced. Parametric modeling study results show that the operation of an ejector reaches its optimum performance at ejector throat diameter approximately of 2.3 mm, mixing section constant-area diameter approximately of 3.5 mm, and diffuser diameter ratio a little bit larger than 2. Higher efficiencies of motive nozzle and suction nozzle as well as higher motive nozzle inlet pressure result in better ejector performances in certain ranges of motive nozzle throat diameter and mixing section constant-area diameter.
ISSN:0360-5442
DOI:10.1016/j.energy.2012.07.008