Regulatory Role for the Profilaggrin N-Terminal Domain in Epidermal Homeostasis

It is well known that profilaggrin, after its release from keratohyalin granules through dephosphorylation, becomes enzymatically processed into individual filaggrin monomers. The roles for filaggrin monomers in aggregating keratin filaments, as a component of the cornified cell envelope, and as a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of investigative dermatology 2012-10, Vol.132 (10), p.2376-2385
Hauptverfasser: Aho, Sirpa, Harding, Clive R., Lee, Jian-Ming, Meldrum, Helen, Bosko, Carol A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that profilaggrin, after its release from keratohyalin granules through dephosphorylation, becomes enzymatically processed into individual filaggrin monomers. The roles for filaggrin monomers in aggregating keratin filaments, as a component of the cornified cell envelope, and as a source of natural moisturizing factor are well established. A specific N-terminal fragment, called the PF-AB domain, becomes proteolytically released as well, but much less is known about its functional role in epidermal development. Here, the functional role of profilaggrin N-terminal (PF-N) domain was addressed by overexpressing three overlapping fragments from a lentiviral expression vector in the epidermis of living skin equivalents. The PF-N domain expression impaired the epidermal development through reducing keratinocyte proliferation and impairing differentiation. The expression of well-known differentiation markers profilaggrin, loricrin, and keratin 10 was considerably downregulated in PF-N domain overexpressing–skin equivalents. The activation of caspase 14 was also substantially affected. In contrast, total silencing of profilaggrin expression, obtained with a lentiviral miR vector, resulted in a hyperproliferative epidermis. We propose a hypothesis that profilaggrin AB domain provides a key feedback mechanism that controls epidermal homeostasis.
ISSN:0022-202X
1523-1747
DOI:10.1038/jid.2012.174