Identification and Accurate Quantitation of Biological Oligosaccharide Mixtures

Structure-specific characterization and quantitation is often required for effective functional studies of oligosaccharides. Inside the gut, HMOs are preferentially bound and catabolized by the beneficial bacteria. HMO utility by these bacteria employs structure-specific catabolism based on a number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2012-09, Vol.84 (18), p.7793-7801
Hauptverfasser: Strum, John S, Kim, Jaehan, Wu, Shuai, De Leoz, Maria Lorna A, Peacock, Kyle, Grimm, Rudolf, German, J. Bruce, Mills, David A, Lebrilla, Carlito B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structure-specific characterization and quantitation is often required for effective functional studies of oligosaccharides. Inside the gut, HMOs are preferentially bound and catabolized by the beneficial bacteria. HMO utility by these bacteria employs structure-specific catabolism based on a number of glycosidases. Determining the activity of these enzymes requires accurate quantitation of a large number of structures. In this study, we describe a method for the quantitation of human milk oligosaccharide (HMO) structures employing LC/MS and isotopically labeled internal standards. Data analysis was accomplished with a newly developed software tool, LC/MS Searcher, that employs a reference structure library to process LC/MS data yielding structural identification with accurate quantitation. The method was used to obtain a meta-enzyme analysis of bacteria, the simultaneous characterization of all glycosidases employed by bacteria for the catabolism of milk oligosaccharides. Analysis of consumed HMO structures confirmed the utility of a β-1,3-galactosidase in Bifidobacterium longum subsp. infantis ATCC 15697 (B. infantis). In comparison, Bifidobacterium breve ATCC 15700 showed significantly less HMO catabolic activity compared to B. infantis.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/ac301128s