Individual degrees of freedom and the solvation properties of water

Using molecular dynamics simulations in conjunction with home-developed Split Integration Symplectic Method we effectively decouple individual degrees of freedom of water molecules and connect them to corresponding thermostats. In this way, we facilitate elucidation of structural, dynamical, spectra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2012-07, Vol.137 (2), p.024108-024108
Hauptverfasser: Bren, Urban, Janežič, Dušanka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using molecular dynamics simulations in conjunction with home-developed Split Integration Symplectic Method we effectively decouple individual degrees of freedom of water molecules and connect them to corresponding thermostats. In this way, we facilitate elucidation of structural, dynamical, spectral, and hydration properties of bulk water at any given combination of rotational, translational, and vibrational temperatures. Elevated rotational temperature of the water medium is found to severely hinder hydration of polar molecules, to affect hydration of ionic species in a nonmonotonous way and to somewhat improve hydration of nonpolar species. As proteins consist of charged, polar, and nonpolar amino-acid residues, the developed methodology is also applied to critically evaluate the hypothesis that the overall decrease in protein hydration and the change in the subtle balance between hydration of various types of amino-acid residues provide a plausible physical mechanism through which microwaves enhance aberrant protein folding and aggregation.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4732514