Amine-Functionalized Lanthanide-Doped Zirconia Nanoparticles: Optical Spectroscopy, Time-Resolved Fluorescence Resonance Energy Transfer Biodetection, and Targeted Imaging
Ultrasmall inorganic oxide nanoparticles doped with trivalent lanthanide ions (Ln3+), a new and huge family of luminescent bioprobes, remain nearly untouched. Currently it is a challenge to synthesize biocompatible ultrasmall oxide bioprobes. Herein, we report a new inorganic oxide bioprobe based on...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2012-09, Vol.134 (36), p.15083-15090 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrasmall inorganic oxide nanoparticles doped with trivalent lanthanide ions (Ln3+), a new and huge family of luminescent bioprobes, remain nearly untouched. Currently it is a challenge to synthesize biocompatible ultrasmall oxide bioprobes. Herein, we report a new inorganic oxide bioprobe based on sub-5 nm amine-functionalized tetragonal ZrO2–Ln3+ nanoparticles synthesized via a facile solvothermal method and ligand exchange. By utilizing the long-lived luminescence of Ln3+, we demonstrate its application as a sensitive time-resolved fluorescence resonance energy transfer (FRET) bioprobe to detect avidin with a record-low detection limit of 3.0 nM. The oxide nanoparticles also exhibit specific recognition of cancer cells overexpressed with urokinase plasminogen activator receptor (uPAR, an important marker of tumor biology and metastasis) and thus may have great potentials in targeted bioimaging. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja306066a |