Purification of recombinant hepatitis B core antigen from unclarified Escherichia coli feedstock using phage-immobilized expanded bed adsorption chromatography

► Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, as ligand to capture HBcAg. ► EBA adsorbent immobilized with fusion M13 phage can capture HBcAg with high selectivity from unclarified feedstock. ► A modified EBAC operation with recirculation of feedstock into the expanded bed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Analytical technologies in the biomedical and life sciences, 2012-08, Vol.903, p.60-67
Hauptverfasser: Ng, Michelle Y.T., Tan, Wen Siang, Tey, Beng Ti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 60
container_title Journal of chromatography. B, Analytical technologies in the biomedical and life sciences
container_volume 903
creator Ng, Michelle Y.T.
Tan, Wen Siang
Tey, Beng Ti
description ► Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, as ligand to capture HBcAg. ► EBA adsorbent immobilized with fusion M13 phage can capture HBcAg with high selectivity from unclarified feedstock. ► A modified EBAC operation with recirculation of feedstock into the expanded bed has improved the uptake rate of HBcAg. ► The antigenicity of HBcAg purified by this affinity EBAC still preserved. Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, inserted into the minor coat protein (gpIII), has been selected in the current study as ligand in direct purification of hepatitis B core antigen (HBcAg) from unclarified Escherichia coli (E. coli) feedstock. The selected fusion phage showed strong association with the surface of the core particle. In the present study, this fusion M13 phage was immobilized onto Streamline base matrix via epoxy activation and used as adsorbent to capture HBcAg from crude E. coli homogenate. The maximum binding capacity for the adsorbent was 3.76mg/mL with equilibrium coefficient of 1.83mg/mL. Due to the slow uptake rate of HBcAg by M13 phage-immobilized adsorbents, a modified EBAC operation with recirculation of feedstock into the expanded bed has been investigated in this study. The introduction of feedstock recirculation has led to an 18% increase in yield; however, the purity of the eluted product was reduced by 15% compared with typical EBAC operation. The level of antigenicity exhibited by the core particles purified by both EBAC operations employed in the present study was comparable to that purified using sucrose ultracentrifugation.
doi_str_mv 10.1016/j.jchromb.2012.06.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038616572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570023212003972</els_id><sourcerecordid>1033457476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-ad81f9e86a80b9738dbfab4ea1c168575b18bc2d41f5e099e50b8f6cc649bbf43</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhSMEoj_wCICXbBJsJ7GdFaJVC0iVQIJK7Cz_jBNfkjjYCaK8DK-Kb--FLSwsj0bfOTP2KYpnBFcEE_ZqV-3MEMOkK4oJrTCrcFM_KE6J4HVZc_blYa5bjktMa3pSnKW0w5hwzOvHxQmlgnQMi9Pi18cteueNWn2YUXAogsmmflbzigZYcn_1CV0gEyKg3PQ9zMjlwWibzaj2YrDoKpkBojeDV5kcPXIANq3BfEVb8nOPlkH1UPppCtqP_meWwI9FzTYXOh9lU4jL_Q73r1Jr6KNahrsnxSOnxgRPj_d5cXt99fnyXXnz4e37yzc3pWkoXUtlBXEdCKYE1h2vhdVO6QYUMYSJlreaCG2obYhrAXcdtFgLx4xhTae1a-rz4uXBd4nh2wZplZNPBsZRzRC2JAmuBSOs5fR_0LppecNZRtsDamJIKYKTS_STincZkvsY5U4eY5T7GCVmMseYdc-PIzY9gf2r-pNbBl4cAKeCVH30Sd5-yg4MY8x4S_cWrw8E5F_77iHKZDzMBqzPEa_SBv-PJX4DYce-8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033457476</pqid></control><display><type>article</type><title>Purification of recombinant hepatitis B core antigen from unclarified Escherichia coli feedstock using phage-immobilized expanded bed adsorption chromatography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ng, Michelle Y.T. ; Tan, Wen Siang ; Tey, Beng Ti</creator><creatorcontrib>Ng, Michelle Y.T. ; Tan, Wen Siang ; Tey, Beng Ti</creatorcontrib><description>► Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, as ligand to capture HBcAg. ► EBA adsorbent immobilized with fusion M13 phage can capture HBcAg with high selectivity from unclarified feedstock. ► A modified EBAC operation with recirculation of feedstock into the expanded bed has improved the uptake rate of HBcAg. ► The antigenicity of HBcAg purified by this affinity EBAC still preserved. Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, inserted into the minor coat protein (gpIII), has been selected in the current study as ligand in direct purification of hepatitis B core antigen (HBcAg) from unclarified Escherichia coli (E. coli) feedstock. The selected fusion phage showed strong association with the surface of the core particle. In the present study, this fusion M13 phage was immobilized onto Streamline base matrix via epoxy activation and used as adsorbent to capture HBcAg from crude E. coli homogenate. The maximum binding capacity for the adsorbent was 3.76mg/mL with equilibrium coefficient of 1.83mg/mL. Due to the slow uptake rate of HBcAg by M13 phage-immobilized adsorbents, a modified EBAC operation with recirculation of feedstock into the expanded bed has been investigated in this study. The introduction of feedstock recirculation has led to an 18% increase in yield; however, the purity of the eluted product was reduced by 15% compared with typical EBAC operation. The level of antigenicity exhibited by the core particles purified by both EBAC operations employed in the present study was comparable to that purified using sucrose ultracentrifugation.</description><identifier>ISSN: 1570-0232</identifier><identifier>EISSN: 1873-376X</identifier><identifier>DOI: 10.1016/j.jchromb.2012.06.043</identifier><identifier>PMID: 22819608</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>adsorbents ; Adsorption ; Affinity purification ; Animals ; Antibodies, Viral - chemistry ; Bacteriophage M13 - chemistry ; Bacteriophage M13 - metabolism ; bacteriophages ; binding capacity ; chromatography ; Chromatography, Affinity - methods ; coat proteins ; EBAC ; Electrophoresis, Polyacrylamide Gel ; Enzyme-Linked Immunosorbent Assay ; epoxides ; Escherichia coli ; Escherichia coli - chemistry ; Escherichia coli - metabolism ; feedstocks ; HBcAg ; hepatitis B antigens ; Hepatitis B Core Antigens - isolation &amp; purification ; Hepatitis B Core Antigens - metabolism ; Hydrogen-Ion Concentration ; Ligands ; Light ; M13 phage ; Mice ; Particle Size ; Peptides - chemistry ; Peptides - metabolism ; Protein Binding ; Recombinant Proteins - isolation &amp; purification ; Recombinant Proteins - metabolism ; Scattering, Radiation ; sucrose ; ultracentrifugation ; Urea</subject><ispartof>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2012-08, Vol.903, p.60-67</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-ad81f9e86a80b9738dbfab4ea1c168575b18bc2d41f5e099e50b8f6cc649bbf43</citedby><cites>FETCH-LOGICAL-c422t-ad81f9e86a80b9738dbfab4ea1c168575b18bc2d41f5e099e50b8f6cc649bbf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1570023212003972$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22819608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, Michelle Y.T.</creatorcontrib><creatorcontrib>Tan, Wen Siang</creatorcontrib><creatorcontrib>Tey, Beng Ti</creatorcontrib><title>Purification of recombinant hepatitis B core antigen from unclarified Escherichia coli feedstock using phage-immobilized expanded bed adsorption chromatography</title><title>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences</title><addtitle>J Chromatogr B Analyt Technol Biomed Life Sci</addtitle><description>► Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, as ligand to capture HBcAg. ► EBA adsorbent immobilized with fusion M13 phage can capture HBcAg with high selectivity from unclarified feedstock. ► A modified EBAC operation with recirculation of feedstock into the expanded bed has improved the uptake rate of HBcAg. ► The antigenicity of HBcAg purified by this affinity EBAC still preserved. Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, inserted into the minor coat protein (gpIII), has been selected in the current study as ligand in direct purification of hepatitis B core antigen (HBcAg) from unclarified Escherichia coli (E. coli) feedstock. The selected fusion phage showed strong association with the surface of the core particle. In the present study, this fusion M13 phage was immobilized onto Streamline base matrix via epoxy activation and used as adsorbent to capture HBcAg from crude E. coli homogenate. The maximum binding capacity for the adsorbent was 3.76mg/mL with equilibrium coefficient of 1.83mg/mL. Due to the slow uptake rate of HBcAg by M13 phage-immobilized adsorbents, a modified EBAC operation with recirculation of feedstock into the expanded bed has been investigated in this study. The introduction of feedstock recirculation has led to an 18% increase in yield; however, the purity of the eluted product was reduced by 15% compared with typical EBAC operation. The level of antigenicity exhibited by the core particles purified by both EBAC operations employed in the present study was comparable to that purified using sucrose ultracentrifugation.</description><subject>adsorbents</subject><subject>Adsorption</subject><subject>Affinity purification</subject><subject>Animals</subject><subject>Antibodies, Viral - chemistry</subject><subject>Bacteriophage M13 - chemistry</subject><subject>Bacteriophage M13 - metabolism</subject><subject>bacteriophages</subject><subject>binding capacity</subject><subject>chromatography</subject><subject>Chromatography, Affinity - methods</subject><subject>coat proteins</subject><subject>EBAC</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>epoxides</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - metabolism</subject><subject>feedstocks</subject><subject>HBcAg</subject><subject>hepatitis B antigens</subject><subject>Hepatitis B Core Antigens - isolation &amp; purification</subject><subject>Hepatitis B Core Antigens - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ligands</subject><subject>Light</subject><subject>M13 phage</subject><subject>Mice</subject><subject>Particle Size</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Protein Binding</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Scattering, Radiation</subject><subject>sucrose</subject><subject>ultracentrifugation</subject><subject>Urea</subject><issn>1570-0232</issn><issn>1873-376X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1TAQhSMEoj_wCICXbBJsJ7GdFaJVC0iVQIJK7Cz_jBNfkjjYCaK8DK-Kb--FLSwsj0bfOTP2KYpnBFcEE_ZqV-3MEMOkK4oJrTCrcFM_KE6J4HVZc_blYa5bjktMa3pSnKW0w5hwzOvHxQmlgnQMi9Pi18cteueNWn2YUXAogsmmflbzigZYcn_1CV0gEyKg3PQ9zMjlwWibzaj2YrDoKpkBojeDV5kcPXIANq3BfEVb8nOPlkH1UPppCtqP_meWwI9FzTYXOh9lU4jL_Q73r1Jr6KNahrsnxSOnxgRPj_d5cXt99fnyXXnz4e37yzc3pWkoXUtlBXEdCKYE1h2vhdVO6QYUMYSJlreaCG2obYhrAXcdtFgLx4xhTae1a-rz4uXBd4nh2wZplZNPBsZRzRC2JAmuBSOs5fR_0LppecNZRtsDamJIKYKTS_STincZkvsY5U4eY5T7GCVmMseYdc-PIzY9gf2r-pNbBl4cAKeCVH30Sd5-yg4MY8x4S_cWrw8E5F_77iHKZDzMBqzPEa_SBv-PJX4DYce-8w</recordid><startdate>20120815</startdate><enddate>20120815</enddate><creator>Ng, Michelle Y.T.</creator><creator>Tan, Wen Siang</creator><creator>Tey, Beng Ti</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope></search><sort><creationdate>20120815</creationdate><title>Purification of recombinant hepatitis B core antigen from unclarified Escherichia coli feedstock using phage-immobilized expanded bed adsorption chromatography</title><author>Ng, Michelle Y.T. ; Tan, Wen Siang ; Tey, Beng Ti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-ad81f9e86a80b9738dbfab4ea1c168575b18bc2d41f5e099e50b8f6cc649bbf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>adsorbents</topic><topic>Adsorption</topic><topic>Affinity purification</topic><topic>Animals</topic><topic>Antibodies, Viral - chemistry</topic><topic>Bacteriophage M13 - chemistry</topic><topic>Bacteriophage M13 - metabolism</topic><topic>bacteriophages</topic><topic>binding capacity</topic><topic>chromatography</topic><topic>Chromatography, Affinity - methods</topic><topic>coat proteins</topic><topic>EBAC</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>epoxides</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - metabolism</topic><topic>feedstocks</topic><topic>HBcAg</topic><topic>hepatitis B antigens</topic><topic>Hepatitis B Core Antigens - isolation &amp; purification</topic><topic>Hepatitis B Core Antigens - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ligands</topic><topic>Light</topic><topic>M13 phage</topic><topic>Mice</topic><topic>Particle Size</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Protein Binding</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Scattering, Radiation</topic><topic>sucrose</topic><topic>ultracentrifugation</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Michelle Y.T.</creatorcontrib><creatorcontrib>Tan, Wen Siang</creatorcontrib><creatorcontrib>Tey, Beng Ti</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Michelle Y.T.</au><au>Tan, Wen Siang</au><au>Tey, Beng Ti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Purification of recombinant hepatitis B core antigen from unclarified Escherichia coli feedstock using phage-immobilized expanded bed adsorption chromatography</atitle><jtitle>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences</jtitle><addtitle>J Chromatogr B Analyt Technol Biomed Life Sci</addtitle><date>2012-08-15</date><risdate>2012</risdate><volume>903</volume><spage>60</spage><epage>67</epage><pages>60-67</pages><issn>1570-0232</issn><eissn>1873-376X</eissn><abstract>► Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, as ligand to capture HBcAg. ► EBA adsorbent immobilized with fusion M13 phage can capture HBcAg with high selectivity from unclarified feedstock. ► A modified EBAC operation with recirculation of feedstock into the expanded bed has improved the uptake rate of HBcAg. ► The antigenicity of HBcAg purified by this affinity EBAC still preserved. Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, inserted into the minor coat protein (gpIII), has been selected in the current study as ligand in direct purification of hepatitis B core antigen (HBcAg) from unclarified Escherichia coli (E. coli) feedstock. The selected fusion phage showed strong association with the surface of the core particle. In the present study, this fusion M13 phage was immobilized onto Streamline base matrix via epoxy activation and used as adsorbent to capture HBcAg from crude E. coli homogenate. The maximum binding capacity for the adsorbent was 3.76mg/mL with equilibrium coefficient of 1.83mg/mL. Due to the slow uptake rate of HBcAg by M13 phage-immobilized adsorbents, a modified EBAC operation with recirculation of feedstock into the expanded bed has been investigated in this study. The introduction of feedstock recirculation has led to an 18% increase in yield; however, the purity of the eluted product was reduced by 15% compared with typical EBAC operation. The level of antigenicity exhibited by the core particles purified by both EBAC operations employed in the present study was comparable to that purified using sucrose ultracentrifugation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22819608</pmid><doi>10.1016/j.jchromb.2012.06.043</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1570-0232
ispartof Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2012-08, Vol.903, p.60-67
issn 1570-0232
1873-376X
language eng
recordid cdi_proquest_miscellaneous_1038616572
source MEDLINE; Elsevier ScienceDirect Journals
subjects adsorbents
Adsorption
Affinity purification
Animals
Antibodies, Viral - chemistry
Bacteriophage M13 - chemistry
Bacteriophage M13 - metabolism
bacteriophages
binding capacity
chromatography
Chromatography, Affinity - methods
coat proteins
EBAC
Electrophoresis, Polyacrylamide Gel
Enzyme-Linked Immunosorbent Assay
epoxides
Escherichia coli
Escherichia coli - chemistry
Escherichia coli - metabolism
feedstocks
HBcAg
hepatitis B antigens
Hepatitis B Core Antigens - isolation & purification
Hepatitis B Core Antigens - metabolism
Hydrogen-Ion Concentration
Ligands
Light
M13 phage
Mice
Particle Size
Peptides - chemistry
Peptides - metabolism
Protein Binding
Recombinant Proteins - isolation & purification
Recombinant Proteins - metabolism
Scattering, Radiation
sucrose
ultracentrifugation
Urea
title Purification of recombinant hepatitis B core antigen from unclarified Escherichia coli feedstock using phage-immobilized expanded bed adsorption chromatography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Purification%20of%20recombinant%20hepatitis%20B%20core%20antigen%20from%20unclarified%20Escherichia%20coli%20feedstock%20using%20phage-immobilized%20expanded%20bed%20adsorption%20chromatography&rft.jtitle=Journal%20of%20chromatography.%20B,%20Analytical%20technologies%20in%20the%20biomedical%20and%20life%20sciences&rft.au=Ng,%20Michelle%20Y.T.&rft.date=2012-08-15&rft.volume=903&rft.spage=60&rft.epage=67&rft.pages=60-67&rft.issn=1570-0232&rft.eissn=1873-376X&rft_id=info:doi/10.1016/j.jchromb.2012.06.043&rft_dat=%3Cproquest_cross%3E1033457476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033457476&rft_id=info:pmid/22819608&rft_els_id=S1570023212003972&rfr_iscdi=true