Purification of recombinant hepatitis B core antigen from unclarified Escherichia coli feedstock using phage-immobilized expanded bed adsorption chromatography
► Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, as ligand to capture HBcAg. ► EBA adsorbent immobilized with fusion M13 phage can capture HBcAg with high selectivity from unclarified feedstock. ► A modified EBAC operation with recirculation of feedstock into the expanded bed...
Gespeichert in:
Veröffentlicht in: | Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Analytical technologies in the biomedical and life sciences, 2012-08, Vol.903, p.60-67 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ► Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, as ligand to capture HBcAg. ► EBA adsorbent immobilized with fusion M13 phage can capture HBcAg with high selectivity from unclarified feedstock. ► A modified EBAC operation with recirculation of feedstock into the expanded bed has improved the uptake rate of HBcAg. ► The antigenicity of HBcAg purified by this affinity EBAC still preserved.
Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, inserted into the minor coat protein (gpIII), has been selected in the current study as ligand in direct purification of hepatitis B core antigen (HBcAg) from unclarified Escherichia coli (E. coli) feedstock. The selected fusion phage showed strong association with the surface of the core particle. In the present study, this fusion M13 phage was immobilized onto Streamline base matrix via epoxy activation and used as adsorbent to capture HBcAg from crude E. coli homogenate. The maximum binding capacity for the adsorbent was 3.76mg/mL with equilibrium coefficient of 1.83mg/mL. Due to the slow uptake rate of HBcAg by M13 phage-immobilized adsorbents, a modified EBAC operation with recirculation of feedstock into the expanded bed has been investigated in this study. The introduction of feedstock recirculation has led to an 18% increase in yield; however, the purity of the eluted product was reduced by 15% compared with typical EBAC operation. The level of antigenicity exhibited by the core particles purified by both EBAC operations employed in the present study was comparable to that purified using sucrose ultracentrifugation. |
---|---|
ISSN: | 1570-0232 1873-376X |
DOI: | 10.1016/j.jchromb.2012.06.043 |