Herbivory reduces plant interactions with above- and belowground antagonists and mutualists

Herbivores affect plants through direct effects, such as tissue damage, and through indirect effects that alter species interactions. Interactions may be positive or negative, so indirect effects have the potential to enhance or lessen the net impacts of herbivores. Despite the ubiquity of these int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2012-07, Vol.93 (7), p.1560-1570
Hauptverfasser: Barber, Nicholas A, Adler, Lynn S, Theis, Nina, Hazzard, Ruth V, Kiers, E. Toby
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herbivores affect plants through direct effects, such as tissue damage, and through indirect effects that alter species interactions. Interactions may be positive or negative, so indirect effects have the potential to enhance or lessen the net impacts of herbivores. Despite the ubiquity of these interactions, the indirect pathways are considerably less understood than the direct effects of herbivores, and multiple indirect pathways are rarely studied simultaneously. We placed herbivore effects in a comprehensive community context by studying how herbivory influences plant interactions with antagonists and mutualists both aboveground and belowground. We manipulated early-season aboveground herbivore damage to Cucumis sativus (cucumber, Cucurbitaceae) and measured interactions with subsequent aboveground herbivores, root-feeding herbivores, pollinators, and arbuscular mycorrhizal fungi (AMF). We quantified plant growth and reproduction and used an enhanced pollination treatment to determine if plants were pollen limited. Increased herbivory reduced interactions with both antagonists and mutualists. Plants with high levels of early herbivory were significantly less likely to suffer leaf damage later in the summer and tended to be less attacked by root herbivores. Herbivory also reduced pollinator visitation, likely due to fewer and smaller flowers, and reduced AMF colonization. The net effect of herbivory on plant growth and reproduction was strongly negative, but lower fruit and seed production were not due to reduced pollinator visits, because reproduction was not pollen limited. Although herbivores influenced interactions between plants and other organisms, these effects appear to be weaker than the direct negative effects of early-season tissue loss.
ISSN:0012-9658
1939-9170
DOI:10.1890/11-1691.1