The Hepatic Soluble Guanylyl Cyclase-Cyclic Guanosine Monophosphate Pathway Mediates the Protection of Remote Ischemic Preconditioning on the Microcirculation in Liver Ischemia-Reperfusion Injury
Remote ischemic preconditioning (RIPC) protects against liver ischemia reperfusion (IR) injury. An essential circulating mediator of this protection is nitric oxide (NO) induced by lower limb RIPC. One of the mechanisms through which NO generally acts is the soluble guanylyl cyclase-cyclic GMP (sGC-...
Gespeichert in:
Veröffentlicht in: | Transplantation 2012-05, Vol.93 (9), p.880-886 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Remote ischemic preconditioning (RIPC) protects against liver ischemia reperfusion (IR) injury. An essential circulating mediator of this protection is nitric oxide (NO) induced by lower limb RIPC. One of the mechanisms through which NO generally acts is the soluble guanylyl cyclase-cyclic GMP (sGC-cGMP) pathway. The present study aimed to assess the role of hepatic sGC-cGMP in lower limb RIPC-induced protection against liver IR injury.
Mice were allocated to 4 groups: 1.Sham; 2.IR: 40 min of lobar hepatic ischemia and 2 hr reperfusion; 3.RIPC+IR: 6 cycles of 4x4 min IR of the lower limb followed by IR group procedure; (4) 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ)+RIPC+IR: ODQ (sGC inhibitor) was administered followed by RIPC+IR group procedure. Hepatic microcirculatory blood flow (MBF) was measured throughout the experiment. Plasma transaminases, hepatic histopathological and transmission electron microscopy studies were performed at the end of the experiment. Hepatic cGMP levels were measured in groups 1-3 in addition to an RIPC alone group.
Compared to liver IR alone, RIPC+IR increased hepatic MBF during liver reperfusion (P |
---|---|
ISSN: | 0041-1337 1534-6080 |
DOI: | 10.1097/TP.0b013e31824cd59d |