Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow

Much difficulty has been encountered in manipulating small-scale materials, such as submicron colloidal particles and macromolecules (e.g., DNA and proteins), in microfluidic devices since diffusion processes due to thermal (Brownian) motion become more pronounced with decreasing particle size. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2012-08, Vol.12 (16), p.2807-2814
Hauptverfasser: Kim, Jae Young, Ahn, Sung Won, Lee, Sung Sik, Kim, Ju Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2814
container_issue 16
container_start_page 2807
container_title Lab on a chip
container_volume 12
creator Kim, Jae Young
Ahn, Sung Won
Lee, Sung Sik
Kim, Ju Min
description Much difficulty has been encountered in manipulating small-scale materials, such as submicron colloidal particles and macromolecules (e.g., DNA and proteins), in microfluidic devices since diffusion processes due to thermal (Brownian) motion become more pronounced with decreasing particle size. Here, we present a novel approach for the continuous focusing of such small-scale materials. First, we successfully focused fluorescent submicron polystyrene (PS) beads along equilibrium positions in microchannels through the addition of a small amount water-soluble polymer [500 ppm poly(ethylene oxide) (PEO)]. Lateral migration velocity significantly depends upon the viscoelastic effect (Weissenberg number: Wi) and the aspect ratio of particle size to channel height (a/h). Interestingly, focusing using viscoelastic flows was also observed for flexible DNA molecules (λ-DNA and T4-DNA), which have radii of gyration (R(g)) of approximately 0.69 μm and 1.5 μm, respectively. This small-scale material manipulation using medium viscoelasticity will contribute to the design of nanoparticle separation and genomic mapping devices.
doi_str_mv 10.1039/c2lc40147a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038610123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038610123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-264f27a00c9e76648d2b31f4e68ecf7afbb5eb6c841cf9ac3e8170e4e70f33c23</originalsourceid><addsrcrecordid>eNqN0MtKAzEUBuAgitXqxgeQWYpQza25LEu9QtGNrodM5qSMZCY1mVF8e1Nb69bVORw-fg4_QmcEXxHM9LWl3nJMuDR76CgPNsFE6f3druUIHaf0hjGZcqEO0YhSKYXG-giVC9NDNL5om2U0fRO6wnR14YIdUtMti-AKG7wPTZ3NysS-sR7Sj7l5mhVt8GCH9WXoaojFR5NsAG9SdoXz4fMEHTjjE5xu5xi93t2-zB8mi-f7x_lsMbGcyn5CBXdUGoytBikEVzWtGHEchALrpHFVNYVKWMWJddpYBopIDBwkdoxZysboYpO7iuF9gNSXbX4FvDcdhCGVuSglCCaU_YNSySTVimd6uaE2hpQiuHIVm9bEr4zWkbr86z7j823uULVQ7-hv2ewbtBqAAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027372984</pqid></control><display><type>article</type><title>Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kim, Jae Young ; Ahn, Sung Won ; Lee, Sung Sik ; Kim, Ju Min</creator><creatorcontrib>Kim, Jae Young ; Ahn, Sung Won ; Lee, Sung Sik ; Kim, Ju Min</creatorcontrib><description>Much difficulty has been encountered in manipulating small-scale materials, such as submicron colloidal particles and macromolecules (e.g., DNA and proteins), in microfluidic devices since diffusion processes due to thermal (Brownian) motion become more pronounced with decreasing particle size. Here, we present a novel approach for the continuous focusing of such small-scale materials. First, we successfully focused fluorescent submicron polystyrene (PS) beads along equilibrium positions in microchannels through the addition of a small amount water-soluble polymer [500 ppm poly(ethylene oxide) (PEO)]. Lateral migration velocity significantly depends upon the viscoelastic effect (Weissenberg number: Wi) and the aspect ratio of particle size to channel height (a/h). Interestingly, focusing using viscoelastic flows was also observed for flexible DNA molecules (λ-DNA and T4-DNA), which have radii of gyration (R(g)) of approximately 0.69 μm and 1.5 μm, respectively. This small-scale material manipulation using medium viscoelasticity will contribute to the design of nanoparticle separation and genomic mapping devices.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c2lc40147a</identifier><identifier>PMID: 22776909</identifier><language>eng</language><publisher>England</publisher><subject>Body height ; Colloids - chemistry ; DNA - chemistry ; Elasticity ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Nanoparticles - chemistry ; Particle Size ; Polyethylene Glycols - chemistry ; Polystyrenes - chemistry ; Spectrometry, Fluorescence ; Viscosity</subject><ispartof>Lab on a chip, 2012-08, Vol.12 (16), p.2807-2814</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-264f27a00c9e76648d2b31f4e68ecf7afbb5eb6c841cf9ac3e8170e4e70f33c23</citedby><cites>FETCH-LOGICAL-c427t-264f27a00c9e76648d2b31f4e68ecf7afbb5eb6c841cf9ac3e8170e4e70f33c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22776909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jae Young</creatorcontrib><creatorcontrib>Ahn, Sung Won</creatorcontrib><creatorcontrib>Lee, Sung Sik</creatorcontrib><creatorcontrib>Kim, Ju Min</creatorcontrib><title>Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Much difficulty has been encountered in manipulating small-scale materials, such as submicron colloidal particles and macromolecules (e.g., DNA and proteins), in microfluidic devices since diffusion processes due to thermal (Brownian) motion become more pronounced with decreasing particle size. Here, we present a novel approach for the continuous focusing of such small-scale materials. First, we successfully focused fluorescent submicron polystyrene (PS) beads along equilibrium positions in microchannels through the addition of a small amount water-soluble polymer [500 ppm poly(ethylene oxide) (PEO)]. Lateral migration velocity significantly depends upon the viscoelastic effect (Weissenberg number: Wi) and the aspect ratio of particle size to channel height (a/h). Interestingly, focusing using viscoelastic flows was also observed for flexible DNA molecules (λ-DNA and T4-DNA), which have radii of gyration (R(g)) of approximately 0.69 μm and 1.5 μm, respectively. This small-scale material manipulation using medium viscoelasticity will contribute to the design of nanoparticle separation and genomic mapping devices.</description><subject>Body height</subject><subject>Colloids - chemistry</subject><subject>DNA - chemistry</subject><subject>Elasticity</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polystyrenes - chemistry</subject><subject>Spectrometry, Fluorescence</subject><subject>Viscosity</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0MtKAzEUBuAgitXqxgeQWYpQza25LEu9QtGNrodM5qSMZCY1mVF8e1Nb69bVORw-fg4_QmcEXxHM9LWl3nJMuDR76CgPNsFE6f3druUIHaf0hjGZcqEO0YhSKYXG-giVC9NDNL5om2U0fRO6wnR14YIdUtMti-AKG7wPTZ3NysS-sR7Sj7l5mhVt8GCH9WXoaojFR5NsAG9SdoXz4fMEHTjjE5xu5xi93t2-zB8mi-f7x_lsMbGcyn5CBXdUGoytBikEVzWtGHEchALrpHFVNYVKWMWJddpYBopIDBwkdoxZysboYpO7iuF9gNSXbX4FvDcdhCGVuSglCCaU_YNSySTVimd6uaE2hpQiuHIVm9bEr4zWkbr86z7j823uULVQ7-hv2ewbtBqAAg</recordid><startdate>20120821</startdate><enddate>20120821</enddate><creator>Kim, Jae Young</creator><creator>Ahn, Sung Won</creator><creator>Lee, Sung Sik</creator><creator>Kim, Ju Min</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20120821</creationdate><title>Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow</title><author>Kim, Jae Young ; Ahn, Sung Won ; Lee, Sung Sik ; Kim, Ju Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-264f27a00c9e76648d2b31f4e68ecf7afbb5eb6c841cf9ac3e8170e4e70f33c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Body height</topic><topic>Colloids - chemistry</topic><topic>DNA - chemistry</topic><topic>Elasticity</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polystyrenes - chemistry</topic><topic>Spectrometry, Fluorescence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jae Young</creatorcontrib><creatorcontrib>Ahn, Sung Won</creatorcontrib><creatorcontrib>Lee, Sung Sik</creatorcontrib><creatorcontrib>Kim, Ju Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jae Young</au><au>Ahn, Sung Won</au><au>Lee, Sung Sik</au><au>Kim, Ju Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2012-08-21</date><risdate>2012</risdate><volume>12</volume><issue>16</issue><spage>2807</spage><epage>2814</epage><pages>2807-2814</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Much difficulty has been encountered in manipulating small-scale materials, such as submicron colloidal particles and macromolecules (e.g., DNA and proteins), in microfluidic devices since diffusion processes due to thermal (Brownian) motion become more pronounced with decreasing particle size. Here, we present a novel approach for the continuous focusing of such small-scale materials. First, we successfully focused fluorescent submicron polystyrene (PS) beads along equilibrium positions in microchannels through the addition of a small amount water-soluble polymer [500 ppm poly(ethylene oxide) (PEO)]. Lateral migration velocity significantly depends upon the viscoelastic effect (Weissenberg number: Wi) and the aspect ratio of particle size to channel height (a/h). Interestingly, focusing using viscoelastic flows was also observed for flexible DNA molecules (λ-DNA and T4-DNA), which have radii of gyration (R(g)) of approximately 0.69 μm and 1.5 μm, respectively. This small-scale material manipulation using medium viscoelasticity will contribute to the design of nanoparticle separation and genomic mapping devices.</abstract><cop>England</cop><pmid>22776909</pmid><doi>10.1039/c2lc40147a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2012-08, Vol.12 (16), p.2807-2814
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_1038610123
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Body height
Colloids - chemistry
DNA - chemistry
Elasticity
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Nanoparticles - chemistry
Particle Size
Polyethylene Glycols - chemistry
Polystyrenes - chemistry
Spectrometry, Fluorescence
Viscosity
title Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral%20migration%20and%20focusing%20of%20colloidal%20particles%20and%20DNA%20molecules%20under%20viscoelastic%20flow&rft.jtitle=Lab%20on%20a%20chip&rft.au=Kim,%20Jae%20Young&rft.date=2012-08-21&rft.volume=12&rft.issue=16&rft.spage=2807&rft.epage=2814&rft.pages=2807-2814&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c2lc40147a&rft_dat=%3Cproquest_cross%3E1038610123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027372984&rft_id=info:pmid/22776909&rfr_iscdi=true