Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow

Much difficulty has been encountered in manipulating small-scale materials, such as submicron colloidal particles and macromolecules (e.g., DNA and proteins), in microfluidic devices since diffusion processes due to thermal (Brownian) motion become more pronounced with decreasing particle size. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2012-08, Vol.12 (16), p.2807-2814
Hauptverfasser: Kim, Jae Young, Ahn, Sung Won, Lee, Sung Sik, Kim, Ju Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Much difficulty has been encountered in manipulating small-scale materials, such as submicron colloidal particles and macromolecules (e.g., DNA and proteins), in microfluidic devices since diffusion processes due to thermal (Brownian) motion become more pronounced with decreasing particle size. Here, we present a novel approach for the continuous focusing of such small-scale materials. First, we successfully focused fluorescent submicron polystyrene (PS) beads along equilibrium positions in microchannels through the addition of a small amount water-soluble polymer [500 ppm poly(ethylene oxide) (PEO)]. Lateral migration velocity significantly depends upon the viscoelastic effect (Weissenberg number: Wi) and the aspect ratio of particle size to channel height (a/h). Interestingly, focusing using viscoelastic flows was also observed for flexible DNA molecules (λ-DNA and T4-DNA), which have radii of gyration (R(g)) of approximately 0.69 μm and 1.5 μm, respectively. This small-scale material manipulation using medium viscoelasticity will contribute to the design of nanoparticle separation and genomic mapping devices.
ISSN:1473-0197
1473-0189
DOI:10.1039/c2lc40147a