Response of microbial activity and biomass to increasing salinity depends on the final salinity, not the original salinity
Salinization is a global land degradation issue which inhibits microbial activity and plant growth. The effect of salinity on microbial activity and biomass has been studied extensively, but little is known about the response of microbes from different soils to increasing salinity although soil sali...
Gespeichert in:
Veröffentlicht in: | Soil biology & biochemistry 2012-10, Vol.53, p.50-55 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Salinization is a global land degradation issue which inhibits microbial activity and plant growth. The effect of salinity on microbial activity and biomass has been studied extensively, but little is known about the response of microbes from different soils to increasing salinity although soil salinity may fluctuate in the field, for example, depending on the quality of the irrigation water or seasonally. An incubation experiment with five soils (one non-saline, four saline with electrical conductivity (ECe) ranging from 1 to 50 dS m−1) was conducted in which the EC was increased to 37 ECe levels (from 3 to 119 dS m−1) by adding NaCl. After amendment with 2% (w/w) pea straw to provide a nutrient source, the soils were incubated at optimal water content for 15 days, microbial respiration was measured continuously and chloroform-labile C was determined every three days. Both cumulative respiration and microbial biomass (indicated by chloroform-labile C) were negatively correlated with EC. Irrespective of the original soil EC, cumulative respiration at a given adjusted EC was similar. Thus, microorganisms from previously saline soils were not more tolerant to a given adjusted EC than those in originally non-saline soil. Microbial biomass in all soils increased from day 0 to day 3, then decreased. The relative increase was greater in soils which had a lower microbial biomass on day 0 (which were more saline). Therefore the relative increase in microbial biomass appears to be a function of the biomass on day 0 rather than the EC. Hence, the results suggest that microbes from originally saline soils are not more tolerant to increases in salinity than those from originally non-saline soils. The strong increase in microbial biomass upon pea straw addition suggests that there is a subset of microbes in all soils that can respond to increased substrate availability even in highly saline environments.
► Four saline and one non-saline soil were incubated at different salinities. ► Microbial respiration and biomass were decreased by increasing salinity. ► Respiration was similar at a given adjusted EC irrespective of the original EC. |
---|---|
ISSN: | 0038-0717 1879-3428 |
DOI: | 10.1016/j.soilbio.2012.04.028 |