On the Determination of the Singular Sturm-Liouville Operator from Two Spectra

In this paper an inverse problem by two given spectrum for a second-order differential operator with coulomb singularity of the type A/x in zero point ( here A is constant), is studied. It is well known that two spectrum {λn} and {µn} uniquely determine the potential function q(x) in the singular St...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer modeling in engineering & sciences 2012, Vol.84 (1), p.1-11
Hauptverfasser: Panakhov, Etibar S, Sat, Murat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper an inverse problem by two given spectrum for a second-order differential operator with coulomb singularity of the type A/x in zero point ( here A is constant), is studied. It is well known that two spectrum {λn} and {µn} uniquely determine the potential function q(x) in the singular Sturm-Liouville equation defined on interval (0,π]. The aim of this paper is to prove the generalized degeneracy of the kernel K(x,t) . In particular, we obtain a new proof of the Hochstadt's theorem concerning the structure of the difference q~(x) - q(x).
ISSN:1526-1492
1526-1506
DOI:10.3970/cmes.2012.084.001