Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3
A polynomial Pythagorean-hodograph (PH) curve r(t)=(x1(t),…,xn(t)) in Rn is characterized by the property that its derivative components satisfy the Pythagorean condition x1′2(t)+⋯+xn′2(t)=σ2(t) for some polynomial σ(t), ensuring that the arc length s(t)=∫σ(t)dt is simply a polynomial in the curve p...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2012-11, Vol.236 (17), p.4375-4382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4382 |
---|---|
container_issue | 17 |
container_start_page | 4375 |
container_title | Journal of computational and applied mathematics |
container_volume | 236 |
creator | Sakkalis, Takis Farouki, Rida T. |
description | A polynomial Pythagorean-hodograph (PH) curve r(t)=(x1(t),…,xn(t)) in Rn is characterized by the property that its derivative components satisfy the Pythagorean condition x1′2(t)+⋯+xn′2(t)=σ2(t) for some polynomial σ(t), ensuring that the arc length s(t)=∫σ(t)dt is simply a polynomial in the curve parameter t. PH curves have thus far been extensively studied in R2 and R3, by means of the complex-number and the quaternion or Hopf map representations, and the basic theory and algorithms for their practical construction and analysis are currently well-developed. However, the case of PH curves in Rn for n>3 remains largely unexplored, due to difficulties with the characterization of Pythagorean (n+1)-tuples when n>3. Invoking recent results from number theory, we characterize the structure of PH curves in dimensions n=5 and n=9, and investigate some of their properties. |
doi_str_mv | 10.1016/j.cam.2012.04.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038299152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042712001628</els_id><sourcerecordid>1038299152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-62e7e877cfb1848d0bf885fe1a5823f3a522130f7a92885e29b85131657aa0d73</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9g8siSc7SR2xISq8iFVggFmy3UuraskLnZSqf8eV2VmOunufV7pHkLuGeQMWPW4y63pcw6M51DkAPyCzJiSdcakVJdkBkLKDAour8lNjDsAqGpWzMjq8zhuzcYHNEO29Y3fBLPfUjuFA0bqBrqcbOeadKVxb2za-ZY2rschOj_QTeJGDDR1DFTckqvWdBHv_uacfL8svxZv2erj9X3xvMqskGLMKo4SlZS2XTNVqAbWrVJli8yUiotWmJJzJqCVpubpgLxeq5IJVpXSGGikmJOHc-8--J8J46h7Fy12nRnQT1EzEIrXNSt5irJz1AYfY8BW74PrTTimkD6Z0zudzOmTOQ2FTuYS83RmMP1wcBh0tA4Hi40LaEfdePcP_QsBonVq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038299152</pqid></control><display><type>article</type><title>Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sakkalis, Takis ; Farouki, Rida T.</creator><creatorcontrib>Sakkalis, Takis ; Farouki, Rida T.</creatorcontrib><description>A polynomial Pythagorean-hodograph (PH) curve r(t)=(x1(t),…,xn(t)) in Rn is characterized by the property that its derivative components satisfy the Pythagorean condition x1′2(t)+⋯+xn′2(t)=σ2(t) for some polynomial σ(t), ensuring that the arc length s(t)=∫σ(t)dt is simply a polynomial in the curve parameter t. PH curves have thus far been extensively studied in R2 and R3, by means of the complex-number and the quaternion or Hopf map representations, and the basic theory and algorithms for their practical construction and analysis are currently well-developed. However, the case of PH curves in Rn for n>3 remains largely unexplored, due to difficulties with the characterization of Pythagorean (n+1)-tuples when n>3. Invoking recent results from number theory, we characterize the structure of PH curves in dimensions n=5 and n=9, and investigate some of their properties.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2012.04.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Complex numbers ; Derivatives ; Hopf map ; INT ; Mathematical analysis ; Mathematical models ; Octonions ; Parameterization of [formula omitted]-tuples ; Pythagorean-hodograph curves ; Quaternions ; Representations</subject><ispartof>Journal of computational and applied mathematics, 2012-11, Vol.236 (17), p.4375-4382</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-62e7e877cfb1848d0bf885fe1a5823f3a522130f7a92885e29b85131657aa0d73</citedby><cites>FETCH-LOGICAL-c373t-62e7e877cfb1848d0bf885fe1a5823f3a522130f7a92885e29b85131657aa0d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2012.04.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Sakkalis, Takis</creatorcontrib><creatorcontrib>Farouki, Rida T.</creatorcontrib><title>Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3</title><title>Journal of computational and applied mathematics</title><description>A polynomial Pythagorean-hodograph (PH) curve r(t)=(x1(t),…,xn(t)) in Rn is characterized by the property that its derivative components satisfy the Pythagorean condition x1′2(t)+⋯+xn′2(t)=σ2(t) for some polynomial σ(t), ensuring that the arc length s(t)=∫σ(t)dt is simply a polynomial in the curve parameter t. PH curves have thus far been extensively studied in R2 and R3, by means of the complex-number and the quaternion or Hopf map representations, and the basic theory and algorithms for their practical construction and analysis are currently well-developed. However, the case of PH curves in Rn for n>3 remains largely unexplored, due to difficulties with the characterization of Pythagorean (n+1)-tuples when n>3. Invoking recent results from number theory, we characterize the structure of PH curves in dimensions n=5 and n=9, and investigate some of their properties.</description><subject>Algorithms</subject><subject>Complex numbers</subject><subject>Derivatives</subject><subject>Hopf map</subject><subject>INT</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Octonions</subject><subject>Parameterization of [formula omitted]-tuples</subject><subject>Pythagorean-hodograph curves</subject><subject>Quaternions</subject><subject>Representations</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9g8siSc7SR2xISq8iFVggFmy3UuraskLnZSqf8eV2VmOunufV7pHkLuGeQMWPW4y63pcw6M51DkAPyCzJiSdcakVJdkBkLKDAour8lNjDsAqGpWzMjq8zhuzcYHNEO29Y3fBLPfUjuFA0bqBrqcbOeadKVxb2za-ZY2rschOj_QTeJGDDR1DFTckqvWdBHv_uacfL8svxZv2erj9X3xvMqskGLMKo4SlZS2XTNVqAbWrVJli8yUiotWmJJzJqCVpubpgLxeq5IJVpXSGGikmJOHc-8--J8J46h7Fy12nRnQT1EzEIrXNSt5irJz1AYfY8BW74PrTTimkD6Z0zudzOmTOQ2FTuYS83RmMP1wcBh0tA4Hi40LaEfdePcP_QsBonVq</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Sakkalis, Takis</creator><creator>Farouki, Rida T.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3</title><author>Sakkalis, Takis ; Farouki, Rida T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-62e7e877cfb1848d0bf885fe1a5823f3a522130f7a92885e29b85131657aa0d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Complex numbers</topic><topic>Derivatives</topic><topic>Hopf map</topic><topic>INT</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Octonions</topic><topic>Parameterization of [formula omitted]-tuples</topic><topic>Pythagorean-hodograph curves</topic><topic>Quaternions</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakkalis, Takis</creatorcontrib><creatorcontrib>Farouki, Rida T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakkalis, Takis</au><au>Farouki, Rida T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2012-11</date><risdate>2012</risdate><volume>236</volume><issue>17</issue><spage>4375</spage><epage>4382</epage><pages>4375-4382</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>A polynomial Pythagorean-hodograph (PH) curve r(t)=(x1(t),…,xn(t)) in Rn is characterized by the property that its derivative components satisfy the Pythagorean condition x1′2(t)+⋯+xn′2(t)=σ2(t) for some polynomial σ(t), ensuring that the arc length s(t)=∫σ(t)dt is simply a polynomial in the curve parameter t. PH curves have thus far been extensively studied in R2 and R3, by means of the complex-number and the quaternion or Hopf map representations, and the basic theory and algorithms for their practical construction and analysis are currently well-developed. However, the case of PH curves in Rn for n>3 remains largely unexplored, due to difficulties with the characterization of Pythagorean (n+1)-tuples when n>3. Invoking recent results from number theory, we characterize the structure of PH curves in dimensions n=5 and n=9, and investigate some of their properties.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2012.04.002</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2012-11, Vol.236 (17), p.4375-4382 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038299152 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Complex numbers Derivatives Hopf map INT Mathematical analysis Mathematical models Octonions Parameterization of [formula omitted]-tuples Pythagorean-hodograph curves Quaternions Representations |
title | Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pythagorean-hodograph%20curves%20in%20Euclidean%20spaces%20of%20dimension%20greater%20than%203&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Sakkalis,%20Takis&rft.date=2012-11&rft.volume=236&rft.issue=17&rft.spage=4375&rft.epage=4382&rft.pages=4375-4382&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2012.04.002&rft_dat=%3Cproquest_cross%3E1038299152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038299152&rft_id=info:pmid/&rft_els_id=S0377042712001628&rfr_iscdi=true |