Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3
A polynomial Pythagorean-hodograph (PH) curve r(t)=(x1(t),…,xn(t)) in Rn is characterized by the property that its derivative components satisfy the Pythagorean condition x1′2(t)+⋯+xn′2(t)=σ2(t) for some polynomial σ(t), ensuring that the arc length s(t)=∫σ(t)dt is simply a polynomial in the curve p...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2012-11, Vol.236 (17), p.4375-4382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A polynomial Pythagorean-hodograph (PH) curve r(t)=(x1(t),…,xn(t)) in Rn is characterized by the property that its derivative components satisfy the Pythagorean condition x1′2(t)+⋯+xn′2(t)=σ2(t) for some polynomial σ(t), ensuring that the arc length s(t)=∫σ(t)dt is simply a polynomial in the curve parameter t. PH curves have thus far been extensively studied in R2 and R3, by means of the complex-number and the quaternion or Hopf map representations, and the basic theory and algorithms for their practical construction and analysis are currently well-developed. However, the case of PH curves in Rn for n>3 remains largely unexplored, due to difficulties with the characterization of Pythagorean (n+1)-tuples when n>3. Invoking recent results from number theory, we characterize the structure of PH curves in dimensions n=5 and n=9, and investigate some of their properties. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2012.04.002 |