A maximum product criterion as a Tikhonov parameter choice rule for Kirsch’s factorization method

Kirsch’s factorization method is a fast inversion technique for visualizing the profile of a scatterer from measurements of the far-field pattern. We present a Tikhonov parameter choice approach based on a maximum product criterion (MPC) which provides a regularization parameter located in the conca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2012-11, Vol.236 (17), p.4264-4275
Hauptverfasser: Bazán, Fermín S.V., Francisco, J.B., Leem, Koung Hee, Pelekanos, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kirsch’s factorization method is a fast inversion technique for visualizing the profile of a scatterer from measurements of the far-field pattern. We present a Tikhonov parameter choice approach based on a maximum product criterion (MPC) which provides a regularization parameter located in the concave part of the L-curve on a log–log scale. The performance of the method is evaluated by comparing our reconstructions with those obtained via the L-curve, Morozov’s discrepancy principle and the SVD-tail. Numerical results that illustrate the effectiveness of the MPC in reconstruction problems involving both simulated and real data are reported and analyzed.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2012.05.008