A maximum product criterion as a Tikhonov parameter choice rule for Kirsch’s factorization method
Kirsch’s factorization method is a fast inversion technique for visualizing the profile of a scatterer from measurements of the far-field pattern. We present a Tikhonov parameter choice approach based on a maximum product criterion (MPC) which provides a regularization parameter located in the conca...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2012-11, Vol.236 (17), p.4264-4275 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Kirsch’s factorization method is a fast inversion technique for visualizing the profile of a scatterer from measurements of the far-field pattern. We present a Tikhonov parameter choice approach based on a maximum product criterion (MPC) which provides a regularization parameter located in the concave part of the L-curve on a log–log scale. The performance of the method is evaluated by comparing our reconstructions with those obtained via the L-curve, Morozov’s discrepancy principle and the SVD-tail. Numerical results that illustrate the effectiveness of the MPC in reconstruction problems involving both simulated and real data are reported and analyzed. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2012.05.008 |