Surface functionalization of graphite and carbon nanotubes by vacuum-ultraviolet photochemical reactions

► Graphite and CNT surfaces were functionalized by VUV photochemistry in NH3 or O2. ► Significant amounts of N and O were incorporated at the materials surface. ► Primary amine and hydroxyl groups were successfully incorporated at the surface. ► NEXAFS permitted to assess the conservation of the aro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2012-09, Vol.258 (22), p.8448-8454
Hauptverfasser: Girard-Lauriault, Pierre-Luc, Illgen, René, Ruiz, Juan-Carlos, Wertheimer, Michael R., Unger, Wolfgang E.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► Graphite and CNT surfaces were functionalized by VUV photochemistry in NH3 or O2. ► Significant amounts of N and O were incorporated at the materials surface. ► Primary amine and hydroxyl groups were successfully incorporated at the surface. ► NEXAFS permitted to assess the conservation of the aromatic structure. Graphite and multiwall carbon nanotube surfaces were functionalized by vacuum-ultraviolet induced photochemistry in NH3 or O2, in order to introduce amino- (NH2) or hydroxyl (OH) functionalities, respectively. Modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), which showed significant incorporation of nitrogen (N) and oxygen (O) at the materials’ surface. While high-resolution XP spectra did not yield much specific information about the incorporated functional groups, chemical derivatization with 4-trifluoromethyl benzaldehyde and trifluoroacetic anhydride accompanied by XPS enabled quantification of NH2 and OH groups, respectively. Using near edge X-ray absorption fine structure spectroscopy, we assessed the conservation of the aromatic structure following functionalization treatments.
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2012.03.012