Effects of Two-Dimensional-Column Thickness on Single-Bubble Rise Characteristics
Bubble rise characteristics, including the shape of, rise velocity of, and pressure around a single bubble, are examined using a two-dimensional column. Of particular interest are the effects of column thickness on these rise characteristics. The column thickness tested for simulating—based on the v...
Gespeichert in:
Veröffentlicht in: | Progress in Multiphase Flow Research 2009/03/15, Vol.4, pp.117-124 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bubble rise characteristics, including the shape of, rise velocity of, and pressure around a single bubble, are examined using a two-dimensional column. Of particular interest are the effects of column thickness on these rise characteristics. The column thickness tested for simulating—based on the volume-of-fluid (VOF) method—the dynamic variations in the flow around/the boundary of deformable bubbles with area-equivalent bubble diameter of 8-10 mm covers a range from 12 to 3 to 1 mm. Besides reasonable agreements in the said characteristics with those obtained experimentally, it is found that the wake vortices, fate of which have a strong influence on the pressure field, remain almost intact over 2-3 cycles of vortex shedding in the 12-mm thick column, just 1 cycle for 3 mm, and in effect with no formation (as well as shedding) of organized vortical structure in the 1-mm thick column. |
---|---|
ISSN: | 1881-5804 1881-6088 |
DOI: | 10.3811/pmfr.4.117 |