In situ synthesis of polyaniline/sodium carboxymethyl cellulose nanorods for high-performance redox supercapacitors
Polyaniline/sodium carboxymethyl cellulose (PANI/CMC) nanorods have been synthesized via in-situ oxidation polymerization of aniline in the presence of sodium carboxymethyl cellulose as a polymerization template. The structure and morphology of the nanorods are characterized by TEM, FE-SEM and XRD....
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2012-08, Vol.211, p.40-45 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polyaniline/sodium carboxymethyl cellulose (PANI/CMC) nanorods have been synthesized via in-situ oxidation polymerization of aniline in the presence of sodium carboxymethyl cellulose as a polymerization template. The structure and morphology of the nanorods are characterized by TEM, FE-SEM and XRD. The size and shape of the composite nanorods are uniform with a diameter of 100 nm. Their electrochemical properties are also investigated using cyclic voltammetry and galvanostatic charge/discharge measurement. The specific capacitance of PANI/CMC nanorods prepared with 20 wt% CMC can be as high as 451.25 F g−1. Its capacitance remains higher than 300 F g−1 after 1000 cycles at a current density of 1 A g−1. These novel nanorods are desirable for applications in supercapacitor devides.
[Display omitted]
► Sodium carboxymethyl cellulose is employed as a polymerization oriented agent. ► Uniform diameters about 100 nm polyaniline/sodium carboxymethyl cellulose nanorods are obtained by a facile method. ► This novel nanorods for supercapacitors showed enhanced specific capacitance and cycling stability than pure polyaniline. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2012.03.074 |