A numerical algorithm for pricing electricity derivatives for jump-diffusion processes based on continuous time lattices

► Numerical algorithm to approximate stochastic processes with asymmetric jumps. ► Based on continuous time Markov chain approximation. ► Numerical study of convergence for the case of Merton jump-diffusion. ► Application to calibrated Geman-Roncoroni model of electricity prices. We present a numeri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2012-10, Vol.222 (2), p.361-368
Hauptverfasser: Albanese, Claudio, Lo, Harry, Tompaidis, Stathis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► Numerical algorithm to approximate stochastic processes with asymmetric jumps. ► Based on continuous time Markov chain approximation. ► Numerical study of convergence for the case of Merton jump-diffusion. ► Application to calibrated Geman-Roncoroni model of electricity prices. We present a numerical algorithm for pricing derivatives on electricity prices. The algorithm is based on approximating the generator of the underlying price process on a lattice of prices, resulting in an approximation of the stochastic process by a continuous time Markov chain. We numerically study the rate of convergence of the algorithm for the case of the Merton jump-diffusion model and apply the algorithm to calculate prices and sensitivities of both European and Bermudan electricity derivatives when the underlying price follows a stochastic process which exhibits both fast mean-reversion and jumps of large magnitude.
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2012.04.030