One-dimensional metal–organic framework photonic crystals used as platforms for vapor sorption

We present the fabrication of one-dimensional photonic crystals (Bragg stacks) based on a microporous metal-organic framework material and mesoporous titanium dioxide. The Bragg stack heterostructures were obtained using two complementary synthesis approaches utilizing the bottom-up assembly of hete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry 2012-01, Vol.22 (20), p.10356-10362
Hauptverfasser: Hinterholzinger, Florian M., Ranft, Annekathrin, Feckl, Johann M., Rühle, Bastian, Bein, Thomas, Lotsch, Bettina V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the fabrication of one-dimensional photonic crystals (Bragg stacks) based on a microporous metal-organic framework material and mesoporous titanium dioxide. The Bragg stack heterostructures were obtained using two complementary synthesis approaches utilizing the bottom-up assembly of heterogeneous, i.e.two-component photonic crystal multilayer structures. Zeolitic imidazolate framework ZIF-8 and mesoporous titanium dioxide were chosen as functional components with different refractive indices. While ZIF-8 is intended to impart molecular selectivity, mesoporous TiO sub(2) is used to ensure high refractive index contrast and to guarantee molecular diffusion within the Bragg stack. The combination of micro- and mesoporosity within one scaffold endows the 1D-MOF PC with characteristic adsorption properties upon exposure to various organic vapors. In this context, the sorption behavior of the photonic material was studied as a function of partial pressure of organic vapors. The results show that the multilayered photonic heterostructures are sensitive and selective towards a series of chemically similar solvent vapors. It is thus anticipated that the concept of multilayer heterogeneous photonic structures will provide a versatile platform for future selective, label-free optical sensors.
ISSN:0959-9428
1364-5501
DOI:10.1039/c2jm15685g