Size-Constrained Regression Test Case Selection Using Multicriteria Optimization

To ensure that a modified software system has not regressed, one approach is to rerun existing test cases. However, this is a potentially costly task. To mitigate the costs, the testing effort can be optimized by executing only a selected subset of the test cases that are believed to have a better c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering 2012-07, Vol.38 (4), p.936-956
Hauptverfasser: Mirarab, S., Akhlaghi, S., Tahvildari, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To ensure that a modified software system has not regressed, one approach is to rerun existing test cases. However, this is a potentially costly task. To mitigate the costs, the testing effort can be optimized by executing only a selected subset of the test cases that are believed to have a better chance of revealing faults. This paper proposes a novel approach for selecting and ordering a predetermined number of test cases from an existing test suite. Our approach forms an Integer Linear Programming problem using two different coverage-based criteria, and uses constraint relaxation to find many close-to-optimal solution points. These points are then combined to obtain a final solution using a voting mechanism. The selected subset of test cases is then prioritized using a greedy algorithm that maximizes minimum coverage in an iterative manner. The proposed approach has been empirically evaluated and the results show significant improvements over existing approaches for some cases and comparable results for the rest. Moreover, our approach provides more consistency compared to existing approaches.
ISSN:0098-5589
1939-3520
DOI:10.1109/TSE.2011.56