Enhanced Mass Conservation in Least-Squares Methods for Navier–Stokes Equations

There are many applications of the least-squares finite element method for the numerical solution of partial differential equations because of a number of benefits that the least-squares method has. However, one of the most well-known drawbacks of the least-squares finite element method is the lack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2009-01, Vol.31 (3), p.2303-2321
Hauptverfasser: Heys, J. J., Lee, E., Manteuffel, T. A., McCormick, S. F., Ruge, J. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There are many applications of the least-squares finite element method for the numerical solution of partial differential equations because of a number of benefits that the least-squares method has. However, one of the most well-known drawbacks of the least-squares finite element method is the lack of exact discrete mass conservation, in some contexts, due to the fact that the least-squares method minimizes the continuity equation in $L^2$-norm. In this paper, we explore the reason for the mass loss and provide new approaches to retain the mass even in a severely underresolved grid.
ISSN:1064-8275
1095-7197
DOI:10.1137/080721303