On the extendability of conformal vector fields of 2-dimensional manifolds

Let g be a pseudo-Riemannian metric on a 2-dimensional manifold M. We prove that a conformal vector field of g|M∖{p}, where p∈M, can be uniquely extended to a conformal vector field of g provided its conformal factor is bounded.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential geometry and its applications 2012-08, Vol.30 (4), p.365-369
Hauptverfasser: Manno, Gianni, Metafune, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let g be a pseudo-Riemannian metric on a 2-dimensional manifold M. We prove that a conformal vector field of g|M∖{p}, where p∈M, can be uniquely extended to a conformal vector field of g provided its conformal factor is bounded.
ISSN:0926-2245
1872-6984
DOI:10.1016/j.difgeo.2012.05.002