Asymptotic behavior of strong solutions to the 3D Navier–Stokes equations with a nonlinear damping term
This paper deals with the asymptotic behavior of strong solutions to the 3D Navier–Stokes equations with a nonlinear damping term |u|β−1u(β≥3). First, we establish an upper bound for the difference between the solution of our equation and the heat equation in L2 space. Then, we optimize the upper bo...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2012-09, Vol.75 (13), p.5002-5009 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the asymptotic behavior of strong solutions to the 3D Navier–Stokes equations with a nonlinear damping term |u|β−1u(β≥3). First, we establish an upper bound for the difference between the solution of our equation and the heat equation in L2 space. Then, we optimize the upper bound of decay for the solutions and obtain their algebraic lower bound by using Fourier Splitting method. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2012.04.014 |