Asymptotic behavior of strong solutions to the 3D Navier–Stokes equations with a nonlinear damping term

This paper deals with the asymptotic behavior of strong solutions to the 3D Navier–Stokes equations with a nonlinear damping term |u|β−1u(β≥3). First, we establish an upper bound for the difference between the solution of our equation and the heat equation in L2 space. Then, we optimize the upper bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2012-09, Vol.75 (13), p.5002-5009
1. Verfasser: Jiang, Zaihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the asymptotic behavior of strong solutions to the 3D Navier–Stokes equations with a nonlinear damping term |u|β−1u(β≥3). First, we establish an upper bound for the difference between the solution of our equation and the heat equation in L2 space. Then, we optimize the upper bound of decay for the solutions and obtain their algebraic lower bound by using Fourier Splitting method.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2012.04.014