On k -Resonant Fullerene Graphs

A fullerene graph $F$ is a 3-connected plane cubic graph with exactly 12 pentagons and the remaining faces as hexagons. Let $M$ be a perfect matching of $F$. A cycle $C$ of $F$ is $M$-alternating if the edges of $C$ appear alternately in and off $M$. A set $\mathcal{H}$ of disjoint hexagons of $F$ i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2009-01, Vol.23 (2), p.1023-1044
Hauptverfasser: Ye, Dong, Qi, Zhongbin, Zhang, Heping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fullerene graph $F$ is a 3-connected plane cubic graph with exactly 12 pentagons and the remaining faces as hexagons. Let $M$ be a perfect matching of $F$. A cycle $C$ of $F$ is $M$-alternating if the edges of $C$ appear alternately in and off $M$. A set $\mathcal{H}$ of disjoint hexagons of $F$ is called a resonant pattern (or sextet pattern) if $F$ has a perfect matching $M$ such that all hexagons in $\mathcal{H}$ are $M$-alternating. A fullerene graph $F$ is $k$-resonant if any $i$ ($0\leq i \leq k$) disjoint hexagons of $F$ form a resonant pattern. In this paper, we prove that every hexagon of a fullerene graph is resonant and all leapfrog fullerene graphs are 2-resonant. Further, we show that a 3-resonant fullerene graph has at most 60 vertices and we construct all nine 3-resonant fullerene graphs, which are also $k$-resonant for every integer $k>3$. Finally, sextet polynomials of the 3-resonant fullerene graphs are computed.
ISSN:0895-4801
1095-7146
DOI:10.1137/080712763