Positive Densities of Transition Probabilities of Diffusion Processes

For diffusion processes in ${\bf R}^d$ with locally unbounded drift coefficients we obtain a sufficient condition for the strict positivity of transition probabilities. To this end, we consider parabolic equations of the form ${\cal L}^*\mu=0$ with respect to measures on ${\bf R}^d\times (0,1)$ with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 2009-01, Vol.53 (2), p.194-215
Hauptverfasser: Bogachev, V. I., Röckner, M., Shaposhnikov, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For diffusion processes in ${\bf R}^d$ with locally unbounded drift coefficients we obtain a sufficient condition for the strict positivity of transition probabilities. To this end, we consider parabolic equations of the form ${\cal L}^*\mu=0$ with respect to measures on ${\bf R}^d\times (0,1)$ with the operator ${\cal L} u:=\partial_t u +\partial_{x_i}(a^{ij}\partial_{x_j}u)+ b^i\partial_{x_i}u.$ It is shown that if the diffusion coefficient $A=(a^{ij})$ is sufficiently regular and the drift coefficient $b=(b^i)$ satisfies the condition $\exp(\kappa |b|^2)\in L_{\rm loc}^1(\mu)$, where the measure $\mu$ is nonnegative, then $\mu$ has a continuous density $\varrho(x,t)$ which is strictly positive for $t>\tau$ provided that it is not identically zero for $t\le\tau$. Applications are obtained to finite-dimensional projections of stationary distributions and transition probabilities of infinite-dimensional diffusions.
ISSN:0040-585X
1095-7219
DOI:10.1137/S0040585X97983523