Computing the Degrees of All Cofactors in Mixed Polynomial Matrices

A mixed polynomial matrix is a polynomial matrix which has two kinds of nonzero coefficients: fixed constants that account for conservation laws and independent parameters that represent physical characteristics. This paper presents an algorithm for computing the degrees of all cofactors simultaneou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2009-01, Vol.23 (2), p.647-660
Hauptverfasser: Iwata, Satoru, Takamatsu, Mizuyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mixed polynomial matrix is a polynomial matrix which has two kinds of nonzero coefficients: fixed constants that account for conservation laws and independent parameters that represent physical characteristics. This paper presents an algorithm for computing the degrees of all cofactors simultaneously in a regular mixed polynomial matrix. The algorithm is based on the valuated matroid intersection and all pair shortest paths. The technique is also used for improving the running time of the algorithm for minimizing the index of the differential-algebraic equation in the hybrid analysis for circuit simulation.
ISSN:0895-4801
1095-7146
DOI:10.1137/070706021