MIXED FINITE ELEMENT APPROXIMATIONS OF PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH NONSMOOTH INITIAL DATA
We analyze the semidiscrete mixed finite element methods for parabolic integro-differential equations that arise in the modeling of nonlocal reactive flows in porous media. A priori L²-error estimates for pressure and velocity are obtained with both smooth and nonsmooth initial data. More precisely,...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2009-01, Vol.47 (5), p.3269-3292 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the semidiscrete mixed finite element methods for parabolic integro-differential equations that arise in the modeling of nonlocal reactive flows in porous media. A priori L²-error estimates for pressure and velocity are obtained with both smooth and nonsmooth initial data. More precisely, a mixed Ritz—Volterra projection, introduced earlier by Ewing et al. in [SIAM J. Numer. Anal., 40 (2002), pp. 1538–1560], is used to derive optimal L²-error estimates for problems with initial data in $H^{2}\cap H_{0}^{1}$ . In addition, for homogeneous equations we derive optimal L²-error estimates for initial data just in L². Here, we use an elementary energy technique and duality argument. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/080740490 |