MIXED FINITE ELEMENT APPROXIMATIONS OF PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH NONSMOOTH INITIAL DATA

We analyze the semidiscrete mixed finite element methods for parabolic integro-differential equations that arise in the modeling of nonlocal reactive flows in porous media. A priori L²-error estimates for pressure and velocity are obtained with both smooth and nonsmooth initial data. More precisely,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2009-01, Vol.47 (5), p.3269-3292
Hauptverfasser: SINHA, RAJEN K., EWING, RICHARD E., LAZAROV, RAYTCHO D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the semidiscrete mixed finite element methods for parabolic integro-differential equations that arise in the modeling of nonlocal reactive flows in porous media. A priori L²-error estimates for pressure and velocity are obtained with both smooth and nonsmooth initial data. More precisely, a mixed Ritz—Volterra projection, introduced earlier by Ewing et al. in [SIAM J. Numer. Anal., 40 (2002), pp. 1538–1560], is used to derive optimal L²-error estimates for problems with initial data in $H^{2}\cap H_{0}^{1}$ . In addition, for homogeneous equations we derive optimal L²-error estimates for initial data just in L². Here, we use an elementary energy technique and duality argument.
ISSN:0036-1429
1095-7170
DOI:10.1137/080740490