ON THE SIMILARITIES BETWEEN THE QUASI-NEWTON INVERSE LEAST SQUARES METHOD AND GMRES
We show how one of the best-known Krylov subspace methods, the generalized minimal residual method (GMRes), can be interpreted as a quasi-Newton method and how the quasi-Newton inverse least squares method (QN-ILS) relates to Krylov subspace methods in general and to GMRes in particular when applied...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2010-01, Vol.47 (6), p.4660-4679 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4679 |
---|---|
container_issue | 6 |
container_start_page | 4660 |
container_title | SIAM journal on numerical analysis |
container_volume | 47 |
creator | HAELTERMAN, ROB DEGROOTE, JORIS VAN HEULE, DIRK VIERENDEELS, JAN |
description | We show how one of the best-known Krylov subspace methods, the generalized minimal residual method (GMRes), can be interpreted as a quasi-Newton method and how the quasi-Newton inverse least squares method (QN-ILS) relates to Krylov subspace methods in general and to GMRes in particular when applied to linear systems. We also show that we can modify QN-ILS in order to make it analytically equivalent to GMRes, without the need for extra matrix-vector products. |
doi_str_mv | 10.1137/090750354 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038234341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>29765433</jstor_id><sourcerecordid>29765433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-b00763e2fce2f7d1f717125946fd619bf379bcc6a470c483a6559a366d40ddc73</originalsourceid><addsrcrecordid>eNpdkFFLwzAUhYMoOKcP_gChCII-VJMmTZbHusWt0HW4du6xZGkLG9s6k-3Bf-8dHRN8CCH3fDn33oPQPcGvhFDxhiUWIaYhu0AdgmXoCyLwJepgTLlPWCCv0Y1zKwzvHqEdlE1SLx8pL4vHcRJN4zxWmfeu8rlSrfA5i7LYT9U8BzJOv9Q0U16ioiz3MtCmgI9VPpoMvCgdeMMxFG7RVa3Xrro73V00-1B5f-Qnk2HcjxLfUEb2_gJjwWkV1AaOKEkNo5IglIzXJSdyUVMhF8ZwzQQ2rEc1D0OpKeclw2VpBO2i59Z3Z5vvQ-X2xWbpTLVe623VHFxBYMeAMmgG6OM_dNUc7BamK2QQEEaFOPq9tJCxjXO2qoudXW60_QGn4phucU4X2KeToXZGr2urt2bpzh8CGkrI99j4oeVWbt_YP10KDi6U_gLMpHi9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922143777</pqid></control><display><type>article</type><title>ON THE SIMILARITIES BETWEEN THE QUASI-NEWTON INVERSE LEAST SQUARES METHOD AND GMRES</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>HAELTERMAN, ROB ; DEGROOTE, JORIS ; VAN HEULE, DIRK ; VIERENDEELS, JAN</creator><creatorcontrib>HAELTERMAN, ROB ; DEGROOTE, JORIS ; VAN HEULE, DIRK ; VIERENDEELS, JAN</creatorcontrib><description>We show how one of the best-known Krylov subspace methods, the generalized minimal residual method (GMRes), can be interpreted as a quasi-Newton method and how the quasi-Newton inverse least squares method (QN-ILS) relates to Krylov subspace methods in general and to GMRes in particular when applied to linear systems. We also show that we can modify QN-ILS in order to make it analytically equivalent to GMRes, without the need for extra matrix-vector products.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/090750354</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Algebraic geometry ; Analogies ; Applied mathematics ; Approximation ; Equivalence ; Exact sciences and technology ; Inverse ; Iterative methods ; Jacobians ; Least squares method ; Linear algebra ; Linear and multilinear algebra, matrix theory ; Linear systems ; Mathematical analysis ; Mathematical models ; Mathematical theorems ; Mathematics ; Matrices ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Perceptron convergence procedure ; Sciences and techniques of general use ; Secant function ; Subspace methods ; Theorems</subject><ispartof>SIAM journal on numerical analysis, 2010-01, Vol.47 (6), p.4660-4679</ispartof><rights>Copyright ©2010 The Society for Industrial and Applied Mathematics</rights><rights>2015 INIST-CNRS</rights><rights>[Copyright] © 2010 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-b00763e2fce2f7d1f717125946fd619bf379bcc6a470c483a6559a366d40ddc73</citedby><cites>FETCH-LOGICAL-c341t-b00763e2fce2f7d1f717125946fd619bf379bcc6a470c483a6559a366d40ddc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/29765433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/29765433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3170,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23598131$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HAELTERMAN, ROB</creatorcontrib><creatorcontrib>DEGROOTE, JORIS</creatorcontrib><creatorcontrib>VAN HEULE, DIRK</creatorcontrib><creatorcontrib>VIERENDEELS, JAN</creatorcontrib><title>ON THE SIMILARITIES BETWEEN THE QUASI-NEWTON INVERSE LEAST SQUARES METHOD AND GMRES</title><title>SIAM journal on numerical analysis</title><description>We show how one of the best-known Krylov subspace methods, the generalized minimal residual method (GMRes), can be interpreted as a quasi-Newton method and how the quasi-Newton inverse least squares method (QN-ILS) relates to Krylov subspace methods in general and to GMRes in particular when applied to linear systems. We also show that we can modify QN-ILS in order to make it analytically equivalent to GMRes, without the need for extra matrix-vector products.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Analogies</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Inverse</subject><subject>Iterative methods</subject><subject>Jacobians</subject><subject>Least squares method</subject><subject>Linear algebra</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Perceptron convergence procedure</subject><subject>Sciences and techniques of general use</subject><subject>Secant function</subject><subject>Subspace methods</subject><subject>Theorems</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkFFLwzAUhYMoOKcP_gChCII-VJMmTZbHusWt0HW4du6xZGkLG9s6k-3Bf-8dHRN8CCH3fDn33oPQPcGvhFDxhiUWIaYhu0AdgmXoCyLwJepgTLlPWCCv0Y1zKwzvHqEdlE1SLx8pL4vHcRJN4zxWmfeu8rlSrfA5i7LYT9U8BzJOv9Q0U16ioiz3MtCmgI9VPpoMvCgdeMMxFG7RVa3Xrro73V00-1B5f-Qnk2HcjxLfUEb2_gJjwWkV1AaOKEkNo5IglIzXJSdyUVMhF8ZwzQQ2rEc1D0OpKeclw2VpBO2i59Z3Z5vvQ-X2xWbpTLVe623VHFxBYMeAMmgG6OM_dNUc7BamK2QQEEaFOPq9tJCxjXO2qoudXW60_QGn4phucU4X2KeToXZGr2urt2bpzh8CGkrI99j4oeVWbt_YP10KDi6U_gLMpHi9</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>HAELTERMAN, ROB</creator><creator>DEGROOTE, JORIS</creator><creator>VAN HEULE, DIRK</creator><creator>VIERENDEELS, JAN</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>ON THE SIMILARITIES BETWEEN THE QUASI-NEWTON INVERSE LEAST SQUARES METHOD AND GMRES</title><author>HAELTERMAN, ROB ; DEGROOTE, JORIS ; VAN HEULE, DIRK ; VIERENDEELS, JAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-b00763e2fce2f7d1f717125946fd619bf379bcc6a470c483a6559a366d40ddc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Analogies</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Inverse</topic><topic>Iterative methods</topic><topic>Jacobians</topic><topic>Least squares method</topic><topic>Linear algebra</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Perceptron convergence procedure</topic><topic>Sciences and techniques of general use</topic><topic>Secant function</topic><topic>Subspace methods</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAELTERMAN, ROB</creatorcontrib><creatorcontrib>DEGROOTE, JORIS</creatorcontrib><creatorcontrib>VAN HEULE, DIRK</creatorcontrib><creatorcontrib>VIERENDEELS, JAN</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAELTERMAN, ROB</au><au>DEGROOTE, JORIS</au><au>VAN HEULE, DIRK</au><au>VIERENDEELS, JAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE SIMILARITIES BETWEEN THE QUASI-NEWTON INVERSE LEAST SQUARES METHOD AND GMRES</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>47</volume><issue>6</issue><spage>4660</spage><epage>4679</epage><pages>4660-4679</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>We show how one of the best-known Krylov subspace methods, the generalized minimal residual method (GMRes), can be interpreted as a quasi-Newton method and how the quasi-Newton inverse least squares method (QN-ILS) relates to Krylov subspace methods in general and to GMRes in particular when applied to linear systems. We also show that we can modify QN-ILS in order to make it analytically equivalent to GMRes, without the need for extra matrix-vector products.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090750354</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2010-01, Vol.47 (6), p.4660-4679 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038234341 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Algebra Algebraic geometry Analogies Applied mathematics Approximation Equivalence Exact sciences and technology Inverse Iterative methods Jacobians Least squares method Linear algebra Linear and multilinear algebra, matrix theory Linear systems Mathematical analysis Mathematical models Mathematical theorems Mathematics Matrices Methods Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Perceptron convergence procedure Sciences and techniques of general use Secant function Subspace methods Theorems |
title | ON THE SIMILARITIES BETWEEN THE QUASI-NEWTON INVERSE LEAST SQUARES METHOD AND GMRES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20SIMILARITIES%20BETWEEN%20THE%20QUASI-NEWTON%20INVERSE%20LEAST%20SQUARES%20METHOD%20AND%20GMRES&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=HAELTERMAN,%20ROB&rft.date=2010-01-01&rft.volume=47&rft.issue=6&rft.spage=4660&rft.epage=4679&rft.pages=4660-4679&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/090750354&rft_dat=%3Cjstor_proqu%3E29765433%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922143777&rft_id=info:pmid/&rft_jstor_id=29765433&rfr_iscdi=true |