ON THE SIMILARITIES BETWEEN THE QUASI-NEWTON INVERSE LEAST SQUARES METHOD AND GMRES

We show how one of the best-known Krylov subspace methods, the generalized minimal residual method (GMRes), can be interpreted as a quasi-Newton method and how the quasi-Newton inverse least squares method (QN-ILS) relates to Krylov subspace methods in general and to GMRes in particular when applied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2010-01, Vol.47 (6), p.4660-4679
Hauptverfasser: HAELTERMAN, ROB, DEGROOTE, JORIS, VAN HEULE, DIRK, VIERENDEELS, JAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show how one of the best-known Krylov subspace methods, the generalized minimal residual method (GMRes), can be interpreted as a quasi-Newton method and how the quasi-Newton inverse least squares method (QN-ILS) relates to Krylov subspace methods in general and to GMRes in particular when applied to linear systems. We also show that we can modify QN-ILS in order to make it analytically equivalent to GMRes, without the need for extra matrix-vector products.
ISSN:0036-1429
1095-7170
DOI:10.1137/090750354