Componentwise uniform equiconvergence of expansions in root vector functions of the Dirac operator with the trigonometric expansion
We consider the one-dimensional Dirac operator on a finite interval G = ( a, b ). We analyze the uniform componentwise equiconvergence of expansions in root vector functions of this operator with the trigonometric Fourier series on a compact set. Theorems on the componentwise equiconvergence on a co...
Gespeichert in:
Veröffentlicht in: | Differential equations 2012-05, Vol.48 (5), p.655-669 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 669 |
---|---|
container_issue | 5 |
container_start_page | 655 |
container_title | Differential equations |
container_volume | 48 |
creator | Kurbanov, V. M. Ismailova, A. I. |
description | We consider the one-dimensional Dirac operator on a finite interval
G
= (
a, b
). We analyze the uniform componentwise equiconvergence of expansions in root vector functions of this operator with the trigonometric Fourier series on a compact set. Theorems on the componentwise equiconvergence on a compact set and the componentwise localization principle are proved. |
doi_str_mv | 10.1134/S0012266112050047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038233921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038233921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-2a9b01d461379493bcf668af7cb86abc90e0575af9cc8396f06c1d609b86dd9a3</originalsourceid><addsrcrecordid>eNp1kcFuGyEURVGUSnXcfkB3SNl0M-1jmGGGZeQkTaRIWbRdjzB-2FgeGANjt-v8eLAdqVWirECcc6-eeIR8YfCNMV59_wnAylIIxkqoAarmjEyYgLbg0PJzMjng4sA_kosY1wAgG1ZPyNPM94N36NLeRqSjs8aHnuJ2tNq7HYYlOo3UG4p_BuWi9S5S62jwPtEd6uQDNaPT6QiyllZIr21QmvoBgzrwvU2r43sKdumd7zFf9L_CT-SDUZuIn1_OKfl9e_Nrdlc8PP64n109FJpXMhWlknNgi0ow3shK8rk2QrTKNHreCjXXEhDqplZGat1yKQwIzRYCZMaLhVR8Sr6eeofgtyPG1PU2atxslEM_xo4Bb0vOZcmyevlKXfsxuDxdtrLDapn_dUrYydLBxxjQdEOwvQp_s9Qd1tK9WUvOlKdMzK5bYvi_-b3QM4XAkXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023315908</pqid></control><display><type>article</type><title>Componentwise uniform equiconvergence of expansions in root vector functions of the Dirac operator with the trigonometric expansion</title><source>SpringerLink Journals</source><creator>Kurbanov, V. M. ; Ismailova, A. I.</creator><creatorcontrib>Kurbanov, V. M. ; Ismailova, A. I.</creatorcontrib><description>We consider the one-dimensional Dirac operator on a finite interval
G
= (
a, b
). We analyze the uniform componentwise equiconvergence of expansions in root vector functions of this operator with the trigonometric Fourier series on a compact set. Theorems on the componentwise equiconvergence on a compact set and the componentwise localization principle are proved.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266112050047</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Analysis ; Boundary conditions ; Difference and Functional Equations ; Differential equations ; Fourier series ; Fourier transforms ; Interval arithmetic ; Intervals ; Localization ; Mathematical analysis ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Operators ; Ordinary Differential Equations ; Partial Differential Equations ; Roots ; Studies ; Vectors (mathematics)</subject><ispartof>Differential equations, 2012-05, Vol.48 (5), p.655-669</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-2a9b01d461379493bcf668af7cb86abc90e0575af9cc8396f06c1d609b86dd9a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266112050047$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266112050047$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kurbanov, V. M.</creatorcontrib><creatorcontrib>Ismailova, A. I.</creatorcontrib><title>Componentwise uniform equiconvergence of expansions in root vector functions of the Dirac operator with the trigonometric expansion</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the one-dimensional Dirac operator on a finite interval
G
= (
a, b
). We analyze the uniform componentwise equiconvergence of expansions in root vector functions of this operator with the trigonometric Fourier series on a compact set. Theorems on the componentwise equiconvergence on a compact set and the componentwise localization principle are proved.</description><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Fourier series</subject><subject>Fourier transforms</subject><subject>Interval arithmetic</subject><subject>Intervals</subject><subject>Localization</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Roots</subject><subject>Studies</subject><subject>Vectors (mathematics)</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kcFuGyEURVGUSnXcfkB3SNl0M-1jmGGGZeQkTaRIWbRdjzB-2FgeGANjt-v8eLAdqVWirECcc6-eeIR8YfCNMV59_wnAylIIxkqoAarmjEyYgLbg0PJzMjng4sA_kosY1wAgG1ZPyNPM94N36NLeRqSjs8aHnuJ2tNq7HYYlOo3UG4p_BuWi9S5S62jwPtEd6uQDNaPT6QiyllZIr21QmvoBgzrwvU2r43sKdumd7zFf9L_CT-SDUZuIn1_OKfl9e_Nrdlc8PP64n109FJpXMhWlknNgi0ow3shK8rk2QrTKNHreCjXXEhDqplZGat1yKQwIzRYCZMaLhVR8Sr6eeofgtyPG1PU2atxslEM_xo4Bb0vOZcmyevlKXfsxuDxdtrLDapn_dUrYydLBxxjQdEOwvQp_s9Qd1tK9WUvOlKdMzK5bYvi_-b3QM4XAkXw</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Kurbanov, V. M.</creator><creator>Ismailova, A. I.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20120501</creationdate><title>Componentwise uniform equiconvergence of expansions in root vector functions of the Dirac operator with the trigonometric expansion</title><author>Kurbanov, V. M. ; Ismailova, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-2a9b01d461379493bcf668af7cb86abc90e0575af9cc8396f06c1d609b86dd9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Fourier series</topic><topic>Fourier transforms</topic><topic>Interval arithmetic</topic><topic>Intervals</topic><topic>Localization</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Roots</topic><topic>Studies</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurbanov, V. M.</creatorcontrib><creatorcontrib>Ismailova, A. I.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurbanov, V. M.</au><au>Ismailova, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Componentwise uniform equiconvergence of expansions in root vector functions of the Dirac operator with the trigonometric expansion</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>48</volume><issue>5</issue><spage>655</spage><epage>669</epage><pages>655-669</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the one-dimensional Dirac operator on a finite interval
G
= (
a, b
). We analyze the uniform componentwise equiconvergence of expansions in root vector functions of this operator with the trigonometric Fourier series on a compact set. Theorems on the componentwise equiconvergence on a compact set and the componentwise localization principle are proved.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0012266112050047</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2012-05, Vol.48 (5), p.655-669 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038233921 |
source | SpringerLink Journals |
subjects | Analysis Boundary conditions Difference and Functional Equations Differential equations Fourier series Fourier transforms Interval arithmetic Intervals Localization Mathematical analysis Mathematical functions Mathematics Mathematics and Statistics Operators Ordinary Differential Equations Partial Differential Equations Roots Studies Vectors (mathematics) |
title | Componentwise uniform equiconvergence of expansions in root vector functions of the Dirac operator with the trigonometric expansion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Componentwise%20uniform%20equiconvergence%20of%20expansions%20in%20root%20vector%20functions%20of%20the%20Dirac%20operator%20with%20the%20trigonometric%20expansion&rft.jtitle=Differential%20equations&rft.au=Kurbanov,%20V.%20M.&rft.date=2012-05-01&rft.volume=48&rft.issue=5&rft.spage=655&rft.epage=669&rft.pages=655-669&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266112050047&rft_dat=%3Cproquest_cross%3E1038233921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023315908&rft_id=info:pmid/&rfr_iscdi=true |