Componentwise uniform equiconvergence of expansions in root vector functions of the Dirac operator with the trigonometric expansion
We consider the one-dimensional Dirac operator on a finite interval G = ( a, b ). We analyze the uniform componentwise equiconvergence of expansions in root vector functions of this operator with the trigonometric Fourier series on a compact set. Theorems on the componentwise equiconvergence on a co...
Gespeichert in:
Veröffentlicht in: | Differential equations 2012-05, Vol.48 (5), p.655-669 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the one-dimensional Dirac operator on a finite interval
G
= (
a, b
). We analyze the uniform componentwise equiconvergence of expansions in root vector functions of this operator with the trigonometric Fourier series on a compact set. Theorems on the componentwise equiconvergence on a compact set and the componentwise localization principle are proved. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266112050047 |