Componentwise uniform equiconvergence of expansions in root vector functions of the Dirac operator with the trigonometric expansion

We consider the one-dimensional Dirac operator on a finite interval G = ( a, b ). We analyze the uniform componentwise equiconvergence of expansions in root vector functions of this operator with the trigonometric Fourier series on a compact set. Theorems on the componentwise equiconvergence on a co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2012-05, Vol.48 (5), p.655-669
Hauptverfasser: Kurbanov, V. M., Ismailova, A. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the one-dimensional Dirac operator on a finite interval G = ( a, b ). We analyze the uniform componentwise equiconvergence of expansions in root vector functions of this operator with the trigonometric Fourier series on a compact set. Theorems on the componentwise equiconvergence on a compact set and the componentwise localization principle are proved.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266112050047