Involvement of dopaminergic system in stress-induced anticonvulsant effect in juvenile mice

Abstract Various stresses affect neuronal functions, including the onset and progression of seizures, in animals and humans of all ages. However, the effect of stress on the convulsion in juvenile animals has been rarely investigated. In the present study, we investigated the effect of swim stress o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2012-09, Vol.1473, p.104-113
Hauptverfasser: Hiroyama, Shuichi, Horiuchi, Masahito, Abe, Kohji, Itoh, Tetsuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Various stresses affect neuronal functions, including the onset and progression of seizures, in animals and humans of all ages. However, the effect of stress on the convulsion in juvenile animals has been rarely investigated. In the present study, we investigated the effect of swim stress on the convulsion threshold in juvenile and adult mice, and the involvement of brain monoaminergic systems in establishing this threshold. In the pentylenetetrazol-induced convulsion model, acute swim stress increased the convulsion threshold in adult mice, whereas repeated swim stress increased it in both juvenile and adult mice. Microdialysis study showed that in the medial prefrontal cortex (mPFC) of juvenile mice, repeated swim stress caused lasting elevation of dopamine (DA) release relative to the basal levels. In contrast, acute swim stress increased noradrenaline release from the mPFC of both juvenile and adult mice compared with the basal levels; the elevation was higher in adult mice. Pretreatment with SCH23390 or haloperidol at low doses suppressed the anticonvulsant effect by repeated swim stress in juvenile mice. Yohimbine clearly abolished the anticonvulsant effect by acute swim stress in adult mice. These results indicated a critical role of brain monoamine in establishing the convulsion threshold. Also, DA system in the mPFC may play an important role in the anticonvulsant effects of repeated swim stress in juvenile mice.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2012.07.031