EpHLA software: A timesaving and accurate tool for improving identification of acceptable mismatches for clinical purposes

Abstract The HLAMatchmaker algorithm, which allows the identification of “safe” acceptable mismatches (AMMs) for recipients of solid organ and cell allografts, is rarely used in part due to the difficulty in using it in the current Excel format. The automation of this algorithm may universalize its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transplant immunology 2012-06, Vol.26 (4), p.230-234
Hauptverfasser: Filho, Herton Luiz Alves Sales, Sousa, Luiz Claudio Demes da Mata, von Glehn, Cristina de Queiroz Carrascosa, da Silva, Adalberto Socorro, Neto, Pedro de Alcântara dos Santos, Nascimento, Fernando Ferraz do, de Castro, José Adail Fonseca, Nascimento, Liliane Machado do, Kneib, Carolina, Cazarote, Helena Bianchi, Kitamura, Daniele Mayumi, Torres, Juliane Roberta Dias, Lopes, Laiane da Cruz, Barros, Lexlanna Aryela Loureiro, Edlin, Evelin Nildiane da Silva, de Moura, Fernanda Sá Leal, Watanabe, Janine Midori Figueiredo, Monte, Semiramis Jamil Hadad do
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The HLAMatchmaker algorithm, which allows the identification of “safe” acceptable mismatches (AMMs) for recipients of solid organ and cell allografts, is rarely used in part due to the difficulty in using it in the current Excel format. The automation of this algorithm may universalize its use to benefit the allocation of allografts. Recently, we have developed a new software called EpHLA, which is the first computer program automating the use of the HLAMatchmaker algorithm. Herein, we present the experimental validation of the EpHLA program by showing the time efficiency and the quality of operation. The same results, obtained by a single antigen bead assay with sera from 10 sensitized patients waiting for kidney transplants, were analyzed either by conventional HLAMatchmaker or by automated EpHLA method. Users testing these two methods were asked to record: (i) time required for completion of the analysis (in minutes); (ii) number of eplets obtained for class I and class II HLA molecules; (iii) categorization of eplets as reactive or non-reactive based on the MFI cutoff value; and (iv) determination of AMMs based on eplets' reactivities. We showed that although both methods had similar accuracy, the automated EpHLA method was over 8 times faster in comparison to the conventional HLAMatchmaker method. In particular the EpHLA software was faster and more reliable but equally accurate as the conventional method to define AMMs for allografts. Conclusion The EpHLA software is an accurate and quick method for the identification of AMMs and thus it may be a very useful tool in the decision-making process of organ allocation for highly sensitized patients as well as in many other applications.
ISSN:0966-3274
1878-5492
DOI:10.1016/j.trim.2012.02.006