Elevated brain iron is independent from atrophy in Huntington's Disease

Increased iron in subcortical structures in patients with Huntington's Disease (HD) has been suggested as a causal factor of neuronal degeneration. The present study examines iron accumulation, measured using magnetic resonance imaging (MRI), in premanifest gene carriers and in early HD patient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2012-07, Vol.61 (3), p.558-564
Hauptverfasser: Dumas, Eve M., Versluis, Maarten J., van den Bogaard, Simon J.A., van Osch, Matthias J.P., Hart, Ellen P., van Roon-Mom, Willeke M.C., van Buchem, Mark A., Webb, Andrew G., van der Grond, Jeroen, Roos, Raymund A.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased iron in subcortical structures in patients with Huntington's Disease (HD) has been suggested as a causal factor of neuronal degeneration. The present study examines iron accumulation, measured using magnetic resonance imaging (MRI), in premanifest gene carriers and in early HD patients as compared to healthy controls. In total 27 early HD patients, 22 premanifest gene carriers and 25 healthy controls, from the Leiden site of the TRACK-HD study, underwent 3T MRI including high resolution 3D T1- and T2-weighted and asymmetric spin echo (ASE) sequences. Magnetic Field Correlation (MFC) maps of iron levels were constructed to assess magnetic field inhomogeneities and compared between groups in the caudate nucleus, putamen, globus pallidus, hippocampus, amygdala, accumbens nucleus, and thalamus. Subsequently the relationship of MFC value to volumetric data and disease state was examined. Higher MFC values were found in the caudate nucleus (p
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2012.03.056