Process optimization for efficient biomediated PHA production from animal-based waste streams
Conventional polymers are made of crude oil components through chemical polymerization. The aim of the project ANIMPOL is to produce biopolymers by converting lipids into polyhydroxyalkanoates (PHA) in a novel process scheme to reduce dependence on crude oil and decrease greenhouse gas emissions. PH...
Gespeichert in:
Veröffentlicht in: | Clean technologies and environmental policy 2012-06, Vol.14 (3), p.495-503 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conventional polymers are made of crude oil components through chemical polymerization. The aim of the project ANIMPOL is to produce biopolymers by converting lipids into polyhydroxyalkanoates (PHA) in a novel process scheme to reduce dependence on crude oil and decrease greenhouse gas emissions. PHA constitutes a group of biobased and biodegradable polyesters that may substitute fossil-based polymers in a wide range of applications. Waste streams from slaughtering cattle are used as substrate material. Lipids from rendering are used in this process scheme for biodiesel production. Slaughtering waste streams may also be hydrolyzed to achieve higher lipid yield. Biodiesel then is separated into a high- and low-quality fraction. High-quality biodiesel meets requirements for sale as fuel and low quality is used for PHA production as carbon source. Selected offal material is used for acid hydrolysis and serves as a source of organic nitrogen as well as carbon source for PHA-free biomass with high production rate in fermentation process. Nitrogen is a limiting factor to control PHA production during the fermentation process. It is available for bacterial growth from hydrolyzed waste streams as well as added separately as NH
4
OH solution. Selected microbial strains are used to produce PHA from this substrate. The focus of the paper is about an overview of the whole process with the main focus on hydrolysis, to look for the possibility of using offal hydrolysis as an organic nitrogen substitute. The process design is optimized by minimizing waste streams and energy losses through cleaner production. Ecological evaluation of the process design will be done through footprint calculation according to Sustainable Process Index methodology. |
---|---|
ISSN: | 1618-954X 1618-9558 |
DOI: | 10.1007/s10098-012-0464-7 |