Age-dependent disruption in hippocampal theta oscillation in amyloid-β overproducing transgenic mice
Abstract Transgenic mice are used to model increased brain amyloid-β (Aβ) and amyloid plaque formation reflecting Alzheimer's disease pathology. In our study hippocampal network oscillations, population spikes, and long-term potentiation (LTP) were recorded in APPswe/PS1dE9 (APP/PS1) and presen...
Gespeichert in:
Veröffentlicht in: | Neurobiology of aging 2012-07, Vol.33 (7), p.1481.e13-1481.e23 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Transgenic mice are used to model increased brain amyloid-β (Aβ) and amyloid plaque formation reflecting Alzheimer's disease pathology. In our study hippocampal network oscillations, population spikes, and long-term potentiation (LTP) were recorded in APPswe/PS1dE9 (APP/PS1) and presenilin1 (PS1) transgenic and wild type mice at 2, 4, and 8 months of age under urethane anesthesia. Hippocampal theta oscillations elicited by brainstem stimulation were similar in wild type and PS1 mice at all age groups. In contrast, APP/PS1 mice showed an age-dependent decrease in hippocampal activity, characterized by a significant decline in elicited theta power and frequency at 4 and 8 months. Magnitudes of population spikes and long-term potentiation in the dentate gyrus were similar across groups at both 4 and 8 months. In APP/PS1 mice, soluble and insoluble Aβ, and hippocampal and cortical plaque load increased with age, and the disruption in hippocampal theta oscillation showed a significant correlation with plaque load. Our study shows that, using in vivo electrophysiological methods, early Aβ-related functional deficits can be robustly detected in the brainstem-hippocampus multisynaptic network. |
---|---|
ISSN: | 0197-4580 1558-1497 |
DOI: | 10.1016/j.neurobiolaging.2011.12.010 |