Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs

Based on the concepts of avoidable/unavoidable exergy destructions and investment costs, this article presents an exergy analysis and an exergoeconomic evaluation to identify the potential energy savings in distillation processes. Methods for calculating the avoidable/unavoidable exergy destructions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2012-06, Vol.42 (1), p.424-433
Hauptverfasser: Wei, Zhiqiang, Zhang, Bingjian, Wu, Shengyuan, Chen, Qinglin, Tsatsaronis, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the concepts of avoidable/unavoidable exergy destructions and investment costs, this article presents an exergy analysis and an exergoeconomic evaluation to identify the potential energy savings in distillation processes. Methods for calculating the avoidable/unavoidable exergy destructions and investment costs for distillation columns, and hot-utility/cold-utility heat exchangers are proposed. For a distillation column, the unavoidable exergy destruction is estimated through the minimum reflux ratio, and the unavoidable investment cost is determined according to the minimum theoretical stage number obtained under the condition of total reflux. For the utility heat exchangers, the unavoidable exergy destruction is estimated through the minimum possible temperature difference, and the unavoidable investment cost corresponds to the maximum allowed temperature difference that is related to practical applications. A light-ends separation plant is used to demonstrate the performance of the proposed approach. The results indicate that the exergy-savings potential enables comparisons of energy-savings potentials among different system components, and the value of the cost-savings potential points out the cost that could be avoided in today’s technological and economic environment. The modified exergoeconomic factor provides the improvement direction in a more accurate way compared with the conventional one. ► The concepts of avoidable exergy destruction and investment costs are introduced to energy-intensive chemical processes. ► Methods for calculating the avoidable exergy destructions and investment costs for distillation processes are proposed. ► Exergy analysis and exergoeconomic evaluation to identify the energy-savings in distillation processes are presented. ► The presented approach is effective to identify the potential for energy-savings in distillation processes.
ISSN:0360-5442
DOI:10.1016/j.energy.2012.03.026