Immobilization and stabilization of subtilisin Carlsberg in magnetically-separable mesoporous silica for transesterification in an organic solvent
Subtilisin Carlsberg (SC) was immobilized and stabilized on magnetically-separable mesoporous silica (Mag-MSU-F) in the form of nanoscale enzyme reactors (NERs) based on the ship-in-a-bottle mechanism. Stabilized NERs of SC (NER-SC) were freeze-dried and successfully used for the transesterification...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2012-01, Vol.14 (7), p.1884-1887 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Subtilisin Carlsberg (SC) was immobilized and stabilized on magnetically-separable mesoporous silica (Mag-MSU-F) in the form of nanoscale enzyme reactors (NERs) based on the ship-in-a-bottle mechanism. Stabilized NERs of SC (NER-SC) were freeze-dried and successfully used for the transesterification of N-acetyl-l-phenylalanine ethyl ester with n-propanol in isooctane. Magnetic separation of Mag-MSU-F facilitated the repeated usages of stable NER-SC. This is the first demonstration for the use of stable and magnetically-separable NERs in an organic solvent, which has the potential for environmentally-friendly synthesis using enzymes in organic solvents. |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/c2gc35559k |