Immunity to the respiratory pathogen Bordetella pertussis
Bordetella pertussis causes whooping cough, a severe respiratory tract infection in infants and children, and also infects adults. Studies in murine models have shown that innate immune mechanisms involving dendritic cells, macrophages, neutrophils, natural killer cells, and antimicrobial peptides h...
Gespeichert in:
Veröffentlicht in: | Mucosal immunology 2012-09, Vol.5 (5), p.485-500 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bordetella pertussis
causes whooping cough, a severe respiratory tract infection in infants and children, and also infects adults. Studies in murine models have shown that innate immune mechanisms involving dendritic cells, macrophages, neutrophils, natural killer cells, and antimicrobial peptides help to control the infection, while complete bacterial clearance requires cellular immunity mediated by T-helper type 1 (Th1) and Th17 cells. Whole cell pertussis vaccines (wP) are effective, but reactogenic, and have been replaced in most developed countries by acellular pertussis vaccines (aP). However, the incidence of pertussis is still high in many vaccinated populations; this may reflect sub-optimal, waning, or escape from immunity induced by current aP. Protective immunity generated by wP appears to be mediated largely by Th1 cells, whereas less efficacious alum-adjuvanted aP induce strong antibody Th2 and Th17 responses. New generation aP that induce Th1 rather than Th2 responses are required to improve vaccine efficacy and prevent further spread of
B. pertussis
. |
---|---|
ISSN: | 1933-0219 1935-3456 |
DOI: | 10.1038/mi.2012.54 |